ﻻ يوجد ملخص باللغة العربية
In this paper we describe a group theoretical approach to the study of structural transitions of icosahedral quasicrystals and point arrays. We apply the concept of Schur rotations, originally proposed by Kramer, to the case of aperiodic structures with icosahedral symmetry; these rotations induce a rotation of the physical and orthogonal spaces invariant under the icosahedral group, and hence, via the cut-and-project method, a continuous transformation of the corresponding model sets. We prove that this approach allows for a characterisation of such transitions in a purely group theoretical framework, and provide explicit computations and specific examples. Moreover, we prove that this approach can be used in the case of finite point sets with icosahedral symmetry, which have a wide range of applications in carbon chemistry (fullerenes) and biology (viral capsids).
We utilize group-theoretical methods to develop a matrix representation of differential operators that act on tensors of any rank. In particular, we concentrate on the matrix formulation of the curl operator. A self-adjoint matrix of the curl operato
Adopting a purely group-theoretical point of view, we consider the star product of functions which is associated, in a natural way, with a square integrable (in general, projective) representation of a locally compact group. Next, we show that for th
Optical reflectivity as a simple diagnostic method for testing structural quality of icosahedral quasicrystals 2 The optical reflectivity of Al-based and Ti-based quasicrystalline and approximant samples were investigated versus the quality of their
In this paper, the tiling of the Euclidean plane with regular hexagons whose vertices are occupied by carbon atoms is called the graphene. We describe six different ways to generate the graphene by the means of group theory. There are two ways starti
Ebert et al. [Phys. Rev. Lett. 77, 3827 (1996)] have fractured icosahedral Al-Mn-Pd single crystals in ultrahigh vacuum and have investigated the cleavage planes in-situ by scanning tunneling microscopy (STM). Globular patterns in the STM-images were