ﻻ يوجد ملخص باللغة العربية
The Fisher-Rao metric from Information Geometry is related to phase transition phenomena in classical statistical mechanics. Several studies propose to extend the use of Information Geometry to study more general phase transitions in complex systems. However, it is unclear whether the Fisher-Rao metric does indeed detect these more general transitions, especially in the absence of a statistical model. In this paper we study the transitions between patterns in the Gray-Scott reaction-diffusion model using Fisher information. We describe the system by a probability density function that represents the size distribution of blobs in the patterns and compute its Fisher information with respect to changing the two rate parameters of the underlying model. We estimate the distribution non-parametrically so that we do not assume any statistical model. The resulting Fisher map can be interpreted as a phase-map of the different patterns. Lines with high Fisher information can be considered as boundaries between regions of parameter space where patterns with similar characteristics appear. These lines of high Fisher information can be interpreted as phase transitions between complex patterns.
Two identical 1D autocatalytic systems with Gray--Scott kinetics--driven towards convectively unstable regimes and submitted to independent spatiotemporal Gaussian white noises--are coupled unidirectionally, but otherwise linearly. Numerical simulati
This paper studies the effects of a time-delayed feedback control on the appearance and development of spatiotemporal patterns in a reaction-diffusion system. Different types of control schemes are investigated, including single-species, diagonal, an
The Potts model is one of the most popular spin models of statistical physics. The prevailing majority of work done so far corresponds to the lattice version of the model. However, many natural or man-made systems are much better described by the top
We give a first principles derivation of the stochastic partial differential equations that describe the chemical reactions of the Gray-Scott model (GS): $U+2V {stackrel {lambda}{rightarrow}} 3 V;$ and $V {stackrel {mu}{rightarrow}} P$, $U {stackrel
Helical and helicoidal precipitation patterns emerging in the wake of reaction-diffusion fronts are studied. In our experiments, these chiral structures arise with well-defined probabilities P_H controlled by conditions such as e.g., the initial conc