ترغب بنشر مسار تعليمي؟ اضغط هنا

Information geometric analysis of phase transitions in complex patterns: the case of the Gray-Scott reaction-diffusion model

340   0   0.0 ( 0 )
 نشر من قبل Omri Har Shemesh Mr.
 تاريخ النشر 2015
والبحث باللغة English




اسأل ChatGPT حول البحث

The Fisher-Rao metric from Information Geometry is related to phase transition phenomena in classical statistical mechanics. Several studies propose to extend the use of Information Geometry to study more general phase transitions in complex systems. However, it is unclear whether the Fisher-Rao metric does indeed detect these more general transitions, especially in the absence of a statistical model. In this paper we study the transitions between patterns in the Gray-Scott reaction-diffusion model using Fisher information. We describe the system by a probability density function that represents the size distribution of blobs in the patterns and compute its Fisher information with respect to changing the two rate parameters of the underlying model. We estimate the distribution non-parametrically so that we do not assume any statistical model. The resulting Fisher map can be interpreted as a phase-map of the different patterns. Lines with high Fisher information can be considered as boundaries between regions of parameter space where patterns with similar characteristics appear. These lines of high Fisher information can be interpreted as phase transitions between complex patterns.



قيم البحث

اقرأ أيضاً

125 - Gonzalo G. Izus 2007
Two identical 1D autocatalytic systems with Gray--Scott kinetics--driven towards convectively unstable regimes and submitted to independent spatiotemporal Gaussian white noises--are coupled unidirectionally, but otherwise linearly. Numerical simulati on then reveals that (even when perturbed by noise) the slave system replicates the convective patterns arising in the master one to a very high degree of precision, as indicated by several measures of synchronization.
This paper studies the effects of a time-delayed feedback control on the appearance and development of spatiotemporal patterns in a reaction-diffusion system. Different types of control schemes are investigated, including single-species, diagonal, an d mixed control. This approach helps to unveil different dynamical regimes, which arise from chaotic state or from traveling waves. In the case of spatiotemporal chaos, the control can either stabilize uniform steady states or lead to bistability between a trivial steady state and a propagating traveling wave. Furthermore, when the basic state is a stable traveling pulse, the control is able to advance stationary Turing patterns or yield the above-mentioned bistability regime. In each case, the stability boundary is found in the parameter space of the control strength and the time delay, and numerical simulations suggest that diagonal control fails to control the spatiotemporal chaos.
The Potts model is one of the most popular spin models of statistical physics. The prevailing majority of work done so far corresponds to the lattice version of the model. However, many natural or man-made systems are much better described by the top ology of a network. We consider the q-state Potts model on an uncorrelated scale-free network for which the node-degree distribution manifests a power-law decay governed by the exponent lambda. We work within the mean-field approximation, since for systems on random uncorrelated scale-free networks this method is known to often give asymptotically exact results. Depending on particular values of q and lambda one observes either a first-order or a second-order phase transition or the system is ordered at any finite temperature. In a case study, we consider the limit q=1 (percolation) and find a correspondence between the magnetic exponents and those describing percolation on a scale-free network. Interestingly, logarithmic corrections to scaling appear at lambda=4 in this case.
122 - Fred Cooper , Gourab Ghoshal , 2013
We give a first principles derivation of the stochastic partial differential equations that describe the chemical reactions of the Gray-Scott model (GS): $U+2V {stackrel {lambda}{rightarrow}} 3 V;$ and $V {stackrel {mu}{rightarrow}} P$, $U {stackrel { u}{rightarrow}} Q$, with a constant feed rate for $U$. We find that the conservation of probability ensured by the chemical master equation leads to a modification of the usual differential equations for the GS model which now involves two composite fields and also intrinsic noise terms. One of the composites is $psi_1 = phi_v^2$, where $ < phi_v >_{eta} = v$ is the concentration of the species $V$ and the averaging is over the internal noise $eta_{u,v,psi_1}$. The second composite field is the product of three fields $ chi = lambda phi_u phi_v^2$ and requires a noise source to ensure probability conservation. A third composite $psi_2 = phi_{u} phi_{v}$ can be also be identified from the noise-induced reactions. The Hamiltonian that governs the time evolution of the many-body wave function, associated with the master equation, has a broken U(1) symmetry related to particle number conservation. By expanding around the (broken symmetry) zero energy solution of the Hamiltonian (by performing a Doi shift) one obtains from our path integral formulation the usual reaction diffusion equation, at the classical level. The Langevin equations that are derived from the chemical master equation have multiplicative noise sources for the density fields $phi_u, phi_v, chi$ that induce higher order processes such as $n rightarrow n$ scattering for $n > 3$. The amplitude of the noise acting on $ phi_v$ is itself stochastic in nature.
Helical and helicoidal precipitation patterns emerging in the wake of reaction-diffusion fronts are studied. In our experiments, these chiral structures arise with well-defined probabilities P_H controlled by conditions such as e.g., the initial conc entration of the reagents. We develop a model which describes the observed experimental trends. The results suggest that P_H is determined by a delicate interplay among the time and length scales related to the front and to the unstable precipitation modes and, furthermore, the noise amplitude also plays a quantifiable role.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا