ﻻ يوجد ملخص باللغة العربية
Stochastic variational inference for collapsed models has recently been successfully applied to large scale topic modelling. In this paper, we propose a stochastic collapsed variational inference algorithm for hidden Markov models, in a sequential data setting. Given a collapsed hidden Markov Model, we break its long Markov chain into a set of short subchains. We propose a novel sum-product algorithm to update the posteriors of the subchains, taking into account their boundary transitions due to the sequential dependencies. Our experiments on two discrete datasets show that our collapsed algorithm is scalable to very large datasets, memory efficient and significantly more accurate than the existing uncollapsed algorithm.
Stochastic variational inference for collapsed models has recently been successfully applied to large scale topic modelling. In this paper, we propose a stochastic collapsed variational inference algorithm in the sequential data setting. Our algorith
Stochastic gradient MCMC (SG-MCMC) algorithms have proven useful in scaling Bayesian inference to large datasets under an assumption of i.i.d data. We instead develop an SG-MCMC algorithm to learn the parameters of hidden Markov models (HMMs) for tim
Topic models are one of the most popular methods for learning representations of text, but a major challenge is that any change to the topic model requires mathematically deriving a new inference algorithm. A promising approach to address this proble
We propose a novel interpretation of the collapsed variational Bayes inference with a zero-order Taylor expansion approximation, called CVB0 inference, for latent Dirichlet allocation (LDA). We clarify the properties of the CVB0 inference by using th
Topic models are Bayesian models that are frequently used to capture the latent structure of certain corpora of documents or images. Each data element in such a corpus (for instance each item in a collection of scientific articles) is regarded as a c