ﻻ يوجد ملخص باللغة العربية
A resource selection function is a model of the likelihood that an available spatial unit will be used by an animal, given its resource value. But how do we appropriately define availability? Step-selection analysis deals with this problem at the scale of the observed positional data, by matching each used step (connecting two consecutive observed positions of the animal) with a set of available steps randomly sampled from a distribution of observed steps or their characteristics. Here we present a simple extension to this approach, termed integrated step-selection analysis (iSSA), which relaxes the implicit assumption that observed movement attributes (i.e. velocities and their temporal autocorrelations) are independent of resource selection. Instead, iSSA relies on simultaneously estimating movement and resource-selection parameters, thus allowing simple likelihood-based inference of resource selection within a mechanistic movement model. We provide theoretical underpinning of iSSA, as well as practical guidelines to its implementation. Using computer simulations, we evaluate the inferential and predictive capacity of iSSA compared to currently used methods. Our work demonstrates the utility of iSSA as a general, flexible and user-friendly approach for both evaluating a variety of ecological hypotheses, and predicting future ecological patterns.
1. Advances in tracking technology have led to an exponential increase in animal location data, greatly enhancing our ability to address interesting questions in movement ecology, but also presenting new challenges related to data manage- ment and an
We discuss methods for {em a priori} selection of parameters to be estimated in inverse problem formulations (such as Maximum Likelihood, Ordinary and Generalized Least Squares) for dynamical systems with numerous state variables and an even larger n
Spatial memory plays a role in the way animals perceive their environments, resulting in memory-informed movement patterns that are observable to ecologists. Developing mathematical techniques to understand how animals use memory in their environment
Our daily human life is filled with a myriad of joint action moments, be it children playing, adults working together (i.e., team sports), or strangers navigating through a crowd. Joint action brings individuals (and embodiment of their emotions) tog
Mathematical modelling and numerical simulations of interaction populations are crucial topics in systems biology. The interactions of ecological models may occur among individuals of the same species or individuals of different species. Describing t