ﻻ يوجد ملخص باللغة العربية
The non-equilibrium spatial dynamics in a two-component Bose-Einstein condensate were excited by controlled miscible-immiscible transition, in which immiscible condensates with domain structures are transferred to the miscible condensates by changing the internal state of 87Rb atoms. The subsequent evolution exhibits the oscillation of spatial structures involving component mixing and separation. We show that the larger total energy of the miscible system results in a higher oscillation frequency. This investigation introduces a new technique to control the miscibility and the spatial degrees of freedom in atomic Bose-Einstein condensates.
We investigate the mean--field equilibrium solutions for a two--species immiscible Bose--Einstein condensate confined by a harmonic confinement with additional linear perturbations. We observe a range of equilibrium density structures, including `bal
Weak measurement in tandem with real-time feedback control is a new route toward engineering novel non-equilibrium quantum matter. Here we develop a theoretical toolbox for quantum feedback control of multicomponent Bose-Einstein condensates (BECs) u
While the Gross--Pitaevskii equation is well-established as the canonical dynamical description of atomic Bose-Einstein condensates (BECs) at zero-temperature, describing the dynamics of BECs at finite temperatures remains a difficult theoretical pro
We investigate formation of Bose-Einstein condensates under non-equilibrium conditions using numerical simulations of the three-dimensional Gross-Pitaevskii equation. For this, we set initial random weakly nonlinear excitations and the forcing at hig
We study the sensitivity of coupled condensate formation dynamics on the history of initial stochastic domain formation in the context of instantaneously quenched elongated harmonically-trapped immiscible two-component atomic Bose gases. The spontane