ﻻ يوجد ملخص باللغة العربية
Let $f$ and $g$ be weight $k$ holomorphic cusp forms and let $S_f(n)$ and $S_g(n)$ denote the sums of their first $n$ Fourier coefficients. Hafner and Ivic [HI], building on Chandrasekharan and Narasimhan [CN], proved asymptotics for $sum_{n leq X} lvert S_f(n) rvert^2$ and proved that the Classical Conjecture, that $S_f(X) ll X^{frac{k-1}{2} + frac{1}{4} + epsilon}$, holds on average over long intervals. In this paper, we introduce and obtain meromorphic continuations for the Dirichlet series $D(s, S_f times S_g) = sum S_f(n)overline{S_g(n)} n^{-(s+k-1)}$ and $D(s, S_f times overline{S_g}) = sum_n S_f(n)S_g(n) n^{-(s + k - 1)}$. Using these meromorphic continuations, we prove asymptotics for the smoothed second moment sums $sum S_f(n)overline{S_g(n)} e^{-n/X}$, proving a smoothed generalization of [HI]. We also attain asymptotics for analogous smoothed second moment sums of normalized Fourier coefficients, proving smoothed generalizations of what would be attainable from [CN]. Our methodology extends to a wide variety of weights and levels, and comparison with [CN] indicates very general cancellation between the Rankin-Selberg $L$-function $L(s, ftimes g)$ and shifted convolution sums of the coefficients of $f$ and $g$. In forthcoming works, the authors apply the results of this paper to prove the Classical Conjecture on $lvert S_f(n) rvert^2$ is true on short intervals, and to prove sign change results on ${S_f(n)}_{n in mathbb{N}}$.
We produce nontrivial asymptotic estimates for shifted sums of the form $sum a(h)b(m)c(2m-h)$, in which $a(n),b(n),c(n)$ are un-normalized Fourier coefficients of holomorphic cusp forms. These results are unconditional, but we demonstrate how to stre
Let $f$ be a weight $k$ holomorphic cusp form of level one, and let $S_f(n)$ denote the sum of the first $n$ Fourier coefficients of $f$. In analogy with Dirichlets divisor problem, it is conjectured that $S_f(X) ll X^{frac{k-1}{2} + frac{1}{4} + eps
We study sign changes in the sequence ${ A(n) : n = c^2 + d^2 }$, where $A(n)$ are the coefficients of a holomorphic cuspidal Hecke eigenform. After proving a variant of an axiomatization for detecting and quantifying sign changes introduced by Meher
We extend the axiomatization for detecting and quantifying sign changes of Meher and Murty to sequences of complex numbers. We further generalize this result when the sequence is comprised of the coefficients of an $L$-function. As immediate applicat
We study the question of Eulerianity (factorizability) for Fourier coefficients of automorphic forms, and we prove a general transfer theorem that allows one to deduce the Eulerianity of certain coefficients from that of another coefficient. We also