ﻻ يوجد ملخص باللغة العربية
In the aim of determining accurate iron abundances in stars, this work is meant to empirically calibrate H-collision cross-sections with iron, where no quantum mechanical calculations have been published yet. Thus, a new iron model atom has been developed, which includes hydrogen collisions for excitation, ionization and charge transfer processes. We show that collisions with hydrogen leading to charge transfer are important for an accurate non-LTE modeling. We apply our calculations on several benchmark stars including the Sun, the metal-rich star {alpha} Cen A and the metal-poor star HD140283.
Aluminium plays a key role in studies of the chemical enrichment of the Galaxy and of globular clusters. However, strong deviations from LTE (non-LTE) are known to significantly affect the inferred abundances in giant and metal-poor stars. We present
We present new ultra-metal-poor (UMP) stars parameters with [Fe/H]<-4.0 based on line-by-line non-local thermodynamic equilibrium (NLTE) abundances using an up-to-date iron model atom with a new recipe for non-elastic hydrogen collision rates. We stu
We investigate the role of hydrogen collisions in NLTE spectral line synthesis, and introduce a new general empirical recipe to determine inelastic charge transfer (CT) and bound-bound hydrogen collisional rates. This recipe is based on fitting the e
The aim of this study is to analyse and determine elemental abundances for a large sample of distant B stars in the outer Galactic disk in order to constrain the chemical distribution of the Galactic disk and models of chemical evolution of the Galax
We performed the non-local thermodynamic equilibrium (non-LTE) calculations for Ti I-II with the updated model atom that includes quantum-mechanical rate coefficients for inelastic collisions with hydrogen atoms. We have calculated for the first time