ترغب بنشر مسار تعليمي؟ اضغط هنا

Optically tunable spin transport on the surface of a topological insulator

125   0   0.0 ( 0 )
 نشر من قبل Dmitry Yudin
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The emerging field of spinoptronics has a potential to supersede the functionality of modern electronics, while a proper description of strong light-matter coupling pose the most intriguing questions from both fundamental scientific and technological perspectives. In this paper we address a highly relevant issue for such a development. We theoretically explore spin dynamics on the surface of a 3D topological insulator (TI) irradiated with an off-resonant high-frequency electromagnetic wave. The strong coupling between electrons and the electromagnetic wave drastically modifies the spin properties of TI. The effects of irradiation are shown to result in anisotropy of electron energy spectrum near the Dirac point and suppression of spin current and are investigated in detail in this work.



قيم البحث

اقرأ أيضاً

We show that skyrmions on the surface of a magnetic topological insulator may experience an attractive interaction that leads to the formation of a skyrmion-skyrmion bound state. This is in contrast to the case of skyrmions in a conventional chiral f erromagnet, for which the intrinsic interaction is repulsive. The origin of skyrmion binding in our model is the molecular hybridization of topologically protected electronic orbitals associated with each skyrmion. Attraction between the skyrmions can therefore be controlled by tuning a chemical potential that populates/depopulates the lowest-energy molecular orbital. We find that the skyrmion-skyrmion bound state can be made stable, unstable, or metastable depending on the chemical potential, magnetic field, and easy-axis anisotropy of the underlying ferromagnet, resulting in a rich phase diagram. Finally, we discuss the possibility to realize this effect in a recently synthesized Cr doped ${left(mathrm{Bi}_{2-y}mathrm{Sb}_{y}right)}_{2}mathrm{Te}_3$ heterostructure.
The surface of topological insulators is proposed as a promising platform for spintronics and quantum information applications. In particular, when time- reversal symmetry is broken, topological surface states are expected to exhibit a wide range of exotic spin phenomena for potential implementation in electronics. Such devices need to be fabricated using nanoscale artificial thin films. It is of critical importance to study the spin behavior of artificial topological MBE thin films associated with magnetic dopants, and with regards to quantum size effects related to surface-to-surface tunneling as well as experimentally isolate time-reversal breaking from non-intrinsic surface electronic gaps. Here we present observation of the first (and thorough) study of magnetically induced spin reorientation phenomena on the surface of a topological insulator. Our results reveal dramatic rearrangements of the spin configuration upon magnetic doping contrasted with chemically similar nonmagnetic doping as well as with quantum tunneling phenomena in ultra-thin high quality MBE films. While we observe that the spin rearrangement induced by quantum tunneling occurs in a time-reversal invariant fashion, we present critical and systematic observation of an out-of-plane spin texture evolution correlated with magnetic interactions, which breaks time-reversal symmetry, demonstrating microscopic TRB at a Kramers point on the surface.
We study transport across a time-dependent magnetic barrier present on the surface of a three-dimensional topological insulator. We show that such a barrier can be implemented for Dirac electrons on the surface of a three-dimensional topological insu lator by a combination of a proximate magnetic material and linearly polarized external radiation. We find that the conductance of the system can be tuned by varying the frequency and amplitude of the radiation and the energy of an electron incident on the barrier providing us optical control on the conductance of such junctions. We first study a $delta$-function barrier which shows a number of interesting features such as sharp peaks and dips in the transmission at certain angles of incidence. Approximate methods for studying the limits of small and large frequencies are presented. We then study a barrier with a finite width. This gives rise to some new features which are not present for a $delta$-function barrier, such as resonances in the conductance at certain values of the system parameters. We present a perturbation theory for studying the limit of large driving amplitude and use this to understand the resonances. Finally, we use a semiclassical approach to study transmission across a time-dependent barrier and show how this can qualitatively explain some of the results found in the earlier analysis. We discuss experiments which can test our theory.
162 - Qin Liu , Chao-Xing Liu , Cenke Xu 2008
The surface states of a topological insulator are described by an emergent relativistic massless Dirac equation in 2+1 dimensions. In contrast to graphene, there is an odd number of Dirac points, and the electron spin is directly coupled to the momen tum. We show that a magnetic impurity opens up a local gap and suppresses the local density of states. Furthermore, the Dirac electronic states mediate an RKKY interaction among the magnetic impurities which is always ferromagnetic, whenever the chemical potential lies near the Dirac point. These effects can be directly measured in STM experiments. We also study the case of quenched disorder through a renormalization group analysis.
Twisting van der Waals heterostructures to induce correlated many-body states provides a novel tuning mechanism in solid-state physics. In this work, we theoretically investigate the fate of the surface Dirac cone of a three-dimensional topological i nsulator subject to a superlattice potential. Using a combination of diagrammatic perturbation theory, lattice model simulations, and ab initio calculations we elucidate the unique aspects of twisting a single Dirac cone with an induced moire potential and the role of the bulk topology on the reconstructed surface band structure. We report a dramatic renormalization of the surface Dirac cone velocity as well as demonstrate a topological obstruction to the formation of isolated minibands. Due to the topological nature of the bulk, surface band gaps cannot open; instead, additional satellite Dirac cones emerge, which can be highly anisotropic and made quite flat. We discuss the implications of our findings for future experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا