ترغب بنشر مسار تعليمي؟ اضغط هنا

A search for cosmogenic production of $beta$-neutron emitting radionuclides in water

83   0   0.0 ( 0 )
 نشر من قبل Steven Dazeley
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Here we present the first results of WATCHBOY, a water Cherenkov detector designed to measure the yield of $beta$-neutron emitting radionuclides produced by cosmic ray muons in water. In addition to the $beta$-neutron measurement, we also provide a first look at isolating single-$beta$ producing radionuclides following muon-induced hadronic showers as a check of the detection capabilities of WATCHBOY. The data taken over $207$ live days indicates a $^{9}$Li production yield upper limit of $1.9times10^{-7}mu^{-1}g^{-1}mathrm{cm}^2$ at $sim400$ meters water equivalent (m.w.e.) overburden at the $90%$ confidence level. In this work the $^{9}$Li signal in WATCHBOY was used as a proxy for the combined search for $^{9}$Li and $^{8}$He production. This result will provide a constraint on estimates of antineutrino-like backgrounds in future water-based antineutrino detectors.



قيم البحث

اقرأ أيضاً

As neutrinoless double-beta decay experiments become more sensitive and intrinsic radioactivity in detector materials is reduced, previously minor contributions to the background must be understood and eliminated. With this in mind, cosmogenic backgr ounds have been studied with the EXO-200 experiment. Using the EXO-200 TPC, the muon flux (through a flat horizontal surface) underground at the Waste Isolation Pilot Plant (WIPP) has been measured to be {Phi} = 4.07 $pm$ 0.14 (sys) $pm$ 0.03 (stat) $times$ $10^{-7}$cm$^{-2}$ s$^{-1}$, with a vertical intensity of $I_{v}$ = 2.97$^{+0.14}_{-0.13}$ (sys) $pm$ 0.02 (stat) $times$ $10^{-7}$cm$^{-2}$ s$^{-1}$ sr$^{-1}$. Simulations of muon-induced backgrounds identified several potential cosmogenic radionuclides, though only 137Xe is a significant background for the 136Xe 0{ u}{beta}{beta} search with EXO-200. Muon-induced neutron backgrounds were measured using {gamma}-rays from neutron capture on the detector materials. This provided a measurement of 137Xe yield, and a test of the accuracy of the neutron production and transport simulations. The independently measured rates of 136Xe neutron capture and of 137Xe decay agree within uncertainties. Geant4 and FLUKA simulations were performed to estimate neutron capture rates, and these estimates agreed to within ~40% or better with measurements. The ability to identify 136Xe(n,{gamma}) events will allow for rejection of 137Xe backgrounds in future 0{ u}{beta}{beta} analyses.
We report the results of a search for neutrinoless double-beta decay in a 9.8~kg$cdot$yr exposure of $^{130}$Te using a bolometric detector array, CUORE-0. The characteristic detector energy resolution and background level in the region of interest a re $5.1pm 0.3{rm~keV}$ FWHM and $0.058 pm 0.004,(mathrm{stat.})pm 0.002,(mathrm{syst.})$~counts/(keV$cdot$kg$cdot$yr), respectively. The median 90%~C.L. lower-limit sensitivity of the experiment is $2.9times 10^{24}~{rm yr}$ and surpasses the sensitivity of previous searches. We find no evidence for neutrinoless double-beta decay of $^{130}$Te and place a Bayesian lower bound on the decay half-life, $T^{0 u}_{1/2}>$~$ 2.7times 10^{24}~{rm yr}$ at 90%~C.L. Combining CUORE-0 data with the 19.75~kg$cdot$yr exposure of $^{130}$Te from the Cuoricino experiment we obtain $T^{0 u}_{1/2} > 4.0times 10^{24}~mathrm{yr}$ at 90%~C.L.~(Bayesian), the most stringent limit to date on this half-life. Using a range of nuclear matrix element estimates we interpret this as a limit on the effective Majorana neutrino mass, $m_{betabeta}< 270$ -- $760~mathrm{meV}$.
The GERmanium Detector Array (GERDA) experiment searched for the lepton-number-violating neutrinoless double-$beta$ ($0 ubetabeta$) decay of $^{76}$Ge, whose discovery would have far-reaching implications in cosmology and particle physics. By operati ng bare germanium diodes, enriched in $^{76}$Ge, in an active liquid argon shield, GERDA achieved an unprecedently low background index of $5.2times10^{-4}$ counts/(keV$cdot$kg$cdot$yr) in the signal region and met the design goal to collect an exposure of 100 kg$cdot$yr in a background-free regime. When combined with the result of Phase I, no signal is observed after 127.2 kg$cdot$yr of total exposure. A limit on the half-life of $0 ubetabeta$ decay in $^{76}$Ge is set at $T_{1/2}>1.8times10^{26}$ yr at 90% C.L., which coincides with the sensitivity assuming no signal.
EXO-200 is a single phase liquid xenon detector designed to search for neutrinoless double-beta decay of $^{136}$Xe. Here we report on a search for various Majoron-emitting modes based on 100 kg$cdot$yr exposure of $^{136}$Xe. A lower limit of $T^{^{ 136}Xe}_{1/2} >1.2 cdot 10^{24}$ yr at 90% C.L. on the half-life of the spectral index = 1 Majoron decay was obtained, corresponding to a constraint on the Majoron-neutrino coupling constant of $|< g^{M}_{ee} >|<$ (0.8-1.7)$cdot$10$^{-5}$.
The Standard Model of particle physics cannot explain the dominance of matter over anti-matter in our Universe. In many model extensions this is a very natural consequence of neutrinos being their own anti-particles (Majorana particles) which implies that a lepton number violating radioactive decay named neutrinoless double beta ($0 ubetabeta$) decay should exist. The detection of this extremely rare hypothetical process requires utmost suppression of any kind of backgrounds. The GERDA collaboration searches for $0 ubetabeta$ decay of $^{76}$Ge ($^{76}rm{Ge} rightarrow,^{76}rm{Se} + 2e^-$) by operating bare detectors made from germanium with enriched $^{76}$Ge fraction in liquid argon. Here, we report on first data of GERDA Phase II. A background level of $approx10^{-3}$ cts/(keV$cdot$kg$cdot$yr) has been achieved which is the world-best if weighted by the narrow energy-signal region of germanium detectors. Combining Phase I and II data we find no signal and deduce a new lower limit for the half-life of $5.3cdot10^{25}$ yr at 90 % C.L. Our sensitivity of $4.0cdot10^{25}$ yr is competitive with the one of experiments with significantly larger isotope mass. GERDA is the first $0 ubetabeta$ experiment that will be background-free up to its design exposure. This progress relies on a novel active veto system, the superior germanium detector energy resolution and the improved background recognition of our new detectors. The unique discovery potential of an essentially background-free search for $0 ubetabeta$ decay motivates a larger germanium experiment with higher sensitivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا