ترغب بنشر مسار تعليمي؟ اضغط هنا

Motivic local density

109   0   0.0 ( 0 )
 نشر من قبل Arthur Forey
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English
 تأليف Arthur Forey




اسأل ChatGPT حول البحث

We develop a theory of local densities and tangent cones in a motivic framework, extending work by Cluckers-Comte-Loeser about $p$-adic local density. We prove some results about geometry of definable sets in Henselian valued fields of characteristic zero, both in semi-algebraic and subanalytic languages, and study Lipschitz continuous maps between such sets. We prove existence of regular stratifications satisfying analogous of Verdier condition $(w_f)$. Using Cluckers-Loeser theory of motivic integration, we define a notion of motivic local density with values in the Grothendieck ring of the theory of the residue sorts. We then prove the existence of a distinguished tangent cone and that one can compute the local density on this cone endowed with appropriate motivic multiplicities. As an application we prove a uniformity theorem for $p$-adic local density.



قيم البحث

اقرأ أيضاً

We develop a motivic integration version of the Poisson summation formula for function fields, with values in the Grothendieck ring of definable exponential sums. We also study division algebras over the function field, and obtain relations among the motivic Fourier transforms of a test function at different completions. We use these to prove, in a special case, a motivic version of a theorem of Deligne-Kazhdan-Vigneras.
172 - Masaki Kameko 2017
We show that the analogue of the Peterson conjecture on the action of Steenrod squares does not hold in motivic cohomology.
We define a notion of colimit for diagrams in a motivic category indexed by a presheaf of spaces (e.g. an etale classifying space), and we study basic properties of this construction. As a case study, we construct the motivic analogs of the classical extended and generalized powers, which refine the categoric
210 - Kyle M. Ormsby 2010
We provide a complete analysis of the motivic Adams spectral sequences converging to the bigraded coefficients of the 2-complete algebraic Johnson-Wilson spectra BPGL<n> over p-adic fields. These spectra interpolate between integral motivic cohomolog y (n=0), a connective version of algebraic K-theory (n=1), and the algebraic Brown-Peterson spectrum. We deduce that, over p-adic fields, the 2-complete BPGL<n> split over 2-complete BPGL<0>, implying that the slice spectral sequence for BPGL collapses. This is the first in a series of two papers investigating motivic invariants of p-adic fields, and it lays the groundwork for an understanding of the motivic Adams-Novikov spectral sequence over such base fields.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا