We present a general review of the projective symmetry group classification of fermionic quantum spin liquids for lattice models of spin $S=1/2$. We then introduce a systematic generalization of the approach for symmetric $mathbb{Z}_2$ quantum spin liquids to the one of chiral phases (i.e., singlet states that break time reversal and lattice reflection, but conserve their product). We apply this framework to classify and discuss possible chiral spin liquids on triangular and kagome lattices. We give a detailed prescription on how to construct quadratic spinon Hamiltonians and microscopic wave functions for each representation class on these lattices. Among the chiral $mathbb{Z}_2$ states, we study the subset of U(1) phases variationally in the antiferromagnetic $J_1$-$J_2$-$J_d$ Heisenberg model on the kagome lattice. We discuss static spin structure factors and symmetry constraints on the bulk spectra of these phases.