ﻻ يوجد ملخص باللغة العربية
The Seebeck coefficient $S$ of the cuprate superconductor La$ _{2-x} $Sr$_{x} $CuO$ _{4}$ (LSCO) was measured in magnetic fields large enough to access the normal state at low temperatures, for a range of Sr concentrations from $x = 0.07$ to $x = 0.15$. For $x = 0.11$, 0.12, 0.125 and 0.13, $S/T$ decreases upon cooling to become negative at low temperatures. The same behavior is observed in the Hall coefficient $R_{H}(T)$. In analogy with other hole-doped cuprates at similar hole concentrations $p$, the negative $S$ and $R_{H}$ show that the Fermi surface of LSCO undergoes a reconstruction caused by the onset of charge-density-wave modulations. Such modulations have indeed been detected in LSCO by X-ray diffraction in precisely the same doping range. Our data show that in LSCO this Fermi-surface reconstruction is confined to $0.085 < p < 0.15$. We argue that in the field-induced normal state of LSCO, charge-density-wave order ends at a critical doping $p_{rm CDW} = 0.15 pm 0.005$, well below the pseudogap critical doping $p^star simeq 0.19$.
The electrical resistivity $rho$ and Hall coefficient R$_H$ of the tetragonal single-layer cuprate Nd-LSCO were measured in magnetic fields up to $H = 37.5$ T, large enough to access the normal state at $T to 0$, for closely spaced dopings $p$ across
We use angle-resolved photoemission spectroscopy to study the doping evolution of infinite-layer Sr$_{1-x}$La$_{x}$CuO$_{2}$ thin films grown by molecular-beam epitaxy. At low doping, the material exhibits a dispersive lower Hubbard band typical of t
Hall effect and quantum oscillation measurements on high temperature cuprate superconductors show that underdoped compositions have a small Fermi surface pocket whereas when heavily overdoped, the pocket increases dramatically in size. The origin of
Quantum oscillations and negative Hall and Seebeck coefficients at low temperature and high magnetic field have shown the Fermi surface of underdoped cuprates to contain a small closed electron pocket. It is thought to result from a reconstruction by
We present a photoemission study of La$_{0.8-x}$Eu$_{0.2}$Sr$_x$CuO$_{4}$ with doping level $x$=1/8, where the charge carriers are expected to order forming static stripes. Though the local probes in direct space seem to be consistent with this idea,