ﻻ يوجد ملخص باللغة العربية
Light-pulse atom interferometers rely on the wave nature of matter and its manipulation with coherent laser pulses. They are used for precise gravimetry and inertial sensing as well as for accurate measurements of fundamental constants. Reaching higher precision requires longer interferometer times which are naturally encountered in microgravity environments such as drop-tower facilities, sounding rockets and dedicated satellite missions aiming at fundamental quantum physics in space. In all those cases, it is necessary to consider arbitrary trajectories and varying orientations of the interferometer set-up in non-inertial frames of reference. Here we provide a versatile representation-free description of atom interferometry entirely based on operator algebra to address this general situation. We show how to analytically determine the phase shift as well as the visibility of interferometers with an arbitrary number of pulses including the effects of local gravitational accelerations, gravity gradients, the rotation of the lasers and non-inertial frames of reference. Our method conveniently unifies previous results and facilitates the investigation of novel interferometer geometries.
The light-pulse atom interferometry method is reviewed. Applications of the method to inertial navigation and tests of the Equivalence Principle are discussed.
We describe the operation of a light pulse interferometer using cold 87Rb atoms in reduced gravity. Using a series of two Raman transitions induced by light pulses, we have obtained Ramsey fringes in the low gravity environment achieved during parabo
We discuss the scattering of a light pulse by a single atom in free space using a purely semi-classical framework. The atom is treated as a linear elastic scatterer allowing to treat each spectral component of the incident pulse separately. For an in
Cold-atom inertial sensors target several applications in navigation, geoscience and tests of fundamental physics. Reaching high sampling rates and high inertial sensitivities, obtained with long interrogation times, represents a challenge for these
We have developed an atom interferometer providing a full inertial base. This device uses two counter-propagating cold-atom clouds that are launched in strongly curved parabolic trajectories. Three single Raman beam pairs, pulsed in time, are success