ﻻ يوجد ملخص باللغة العربية
In the first part of this paper I shall discuss the round-about way of how the integrable chiral Potts model was discovered about 30 years ago. As there should be more higher-genus models to be discovered, this might be of interest. In the second part I shall discuss some quantum group aspects, especially issues of odd versus even $N$ related to the Serre relations conjecture in our quantum loop subalgebra paper of 5 years ago and how we can make good use of coproducts, also borrowing ideas of Drinfeld, Jimbo, Deguchi, Fabricius, McCoy and Nishino.
At roots of unity the $N$-state integrable chiral Potts model and the six-vertex model descend from each other with the $tau_2$ model as the intermediate. We shall discuss how different gauge choices in the six-vertex model lead to two different quan
We study birational transformations of the projective space originating from lattice statistical mechanics, specifically from various chiral Potts models. Associating these models to emph{stable patterns} and emph{signed-patterns}, we give general re
In this paper we discuss the integrable chiral Potts model, as it clearly relates to how we got befriended with Vaughan Jones, whose birthday we celebrated at the Qinhuangdao meeting. Remarkably we can also celebrate the birthday of the model, as it
We construct lattice parafermions for the $Z(N)$ chiral Potts model in terms of quasi-local currents of the underlying quantum group. We show that the conservation of the quantum group currents leads to twisted discrete-holomorphicity (DH) conditions
We continue our study of the full set of translation-invariant splitting Gibbs measures (TISGMs, translation-invariant tree-indexed Markov chains) for the $q$-state Potts model on a Cayley tree. In our previous work cite{KRK} we gave a full descripti