ﻻ يوجد ملخص باللغة العربية
In this paper, the classical and quantum solutions of some axisymmetric cosmologies coupled to a massless scalar field are studied in the context of minisuperspace approximation. In these models, the singular nature of the Lagrangians entails a search for possible conditional symmetries. These have been proven to be the simultaneous conformal symmetries of the supermetric and the superpotential. The quantization is performed by adopting the Dirac proposal for constrained systems, i.e. promoting the first-class constraints to operators annihilating the wave function. To further enrich the approach, we follow cite{Christodoulakis:2012eg} and impose the operators related to the classical conditional symmetries on the wave function. These additional equations select particular solutions of the Wheeler-DeWitt equation. In order to gain some physical insight from the quantization of these cosmological systems, we perform a semiclassical analysis following the Bohmian approach to quantum theory. The generic result is that, in all but one model, one can find appropriate ranges of the parameters, so that the emerging semiclassical geometries are non-singular. An attempt for physical interpretation involves the study of the effective energy-momentum tensor which corresponds to an imperfect fluid.
We discuss the particle horizon problem in the framework of spatially homogeneous and isotropic scalar cosmologies. To this purpose we consider a Friedmann-Lemaitre-Robertson-Walker (FLRW) spacetime with possibly non-zero spatial sectional curvature
The Szekeres system is studied with two methods for the determination of conservation laws. Specifically we apply the theory of group invariant transformations and the method of singularity analysis. We show that the Szekeres system admits a Lagrangi
We show that several integrable (i.e., exactly solvable) scalar cosmologies considered by Fre, Sagnotti and Sorin (Nuclear Physics textbf{B 877}(3) (2013), 1028--1106) can be generalized to include cases where the spatial curvature is not zero and, b
We investigate the dynamics of Einstein equations in the vicinity of the two recently described types of singularity of anisotropic and homogeneous cosmological models described by the action $$ S=int d^4x sqrt{-g}{F(phi)R - partial_aphipartial^aphi
There are a number of publications on relativistic objects dealing either with black holes or naked singularities in the center. Here we show that there exist static spherically symmetric solutions of Einstein equations with a strongly nonlinear scal