ترغب بنشر مسار تعليمي؟ اضغط هنا

Footprints of Loop I on Cosmic Microwave Background Maps

80   0   0.0 ( 0 )
 نشر من قبل Subir Sarkar
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Cosmology has made enormous progress through studies of the cosmic microwave background, however the subtle signals being now sought such as B-mode polarisation due to primordial gravitational waves are increasingly hard to disentangle from residual Galactic foregrounds in the derived CMB maps. We revisit our finding that on large angular scales there are traces of the nearby old supernova remnant Loop I in the WMAP 9-year map of the CMB and confirm this with the new SMICA map from the Planck satellite.



قيم البحث

اقرأ أيضاً

We discuss the potential of a next generation space-borne CMB experiment for studies of extragalactic sources with reference to COrE+, a project submitted to ESA in response to the M4 call. We consider three possible options for the telescope size: 1 m, 1.5m and 2m (although the last option is probably impractical, given the M4 boundary conditions). The proposed instrument will be far more sensitive than Planck and will have a diffraction-limited angular resolution. These properties imply that even the 1m telescope option will perform substantially better than Planck for studies of extragalactic sources. The source detection limits as a function of frequency have been estimated by means of realistic simulations. The most significant improvements over Planck results are presented for each option. COrE+ will provide much larger samples of truly local star-forming galaxies, making possible analyses of the properties of galaxies (luminosity functions, dust mass functions, star formation rate functions, dust temperature distributions, etc.) across the Hubble sequence. Even more interestingly, COrE+ will detect, at |b|> 30 deg, thousands of strongly gravitationally lensed galaxies. Such large samples are of extraordinary astrophysical and cosmological value in many fields. Moreover, COrE+ high frequency maps will be optimally suited to pick up proto-clusters of dusty galaxies, i.e. to investigate the evolution of large scale structure at larger redshifts than can be reached by other means. Thanks to its high sensitivity COrE+ will also yield a spectacular advance in the blind detection of extragalactic sources in polarization. This will open a new window for studies of radio source polarization and of the global properties of magnetic fields in star forming galaxies and of their relationships with SFRs.
We apply our symmetry based Power tensor technique to test conformity of PLANCK Polarization maps with statistical isotropy. On a wide range of angular scales (l=40-150), our preliminary analysis detects many statistically anisotropic multipoles in f oreground cleaned full sky PLANCK polarization maps viz., COMMANDER and NILC. We also study the effect of residual foregrounds that may still be present in the galactic plane using both common UPB77 polarization mask, as well as the individual component separation method specific polarization masks. However some of the statistically anisotropic modes still persist, albeit significantly in NILC map. We further probed the data for any coherent alignments across multipoles in several bins from the chosen multipole range.
212 - D. Herranz , P. Vielva 2011
We aim to present a tutorial on the detection, parameter estimation and statistical analysis of compact sources (far galaxies, galaxy clusters and Galactic dense emission regions) in cosmic microwave background observations. The topic is of great rel evance for current and future cosmic microwave background missions because the presence of compact sources in the data introduces very significant biases in the determination of the cosmological parameters that determine the energy contain, origin and evolution of the universe and because compact sources themselves provide us with important information about the large scale structure of the universe.
Delensing is an increasingly important technique to reverse the gravitational lensing of the cosmic microwave background (CMB) and thus reveal primordial signals the lensing may obscure. We present a first demonstration of delensing on Planck tempera ture maps using the cosmic infrared background (CIB). Reversing the lensing deflections in Planck CMB temperature maps using a linear combination of the 545 and 857GHz maps as a lensing tracer, we find that the lensing effects in the temperature power spectrum are reduced in a manner consistent with theoretical expectations. In particular, the characteristic sharpening of the acoustic peaks of the temperature power spectrum resulting from successful delensing is detected at a significance of 16$rm{sigma}$, with an amplitude of $A_{rm{delens}} = 1.12 pm 0.07$ relative to the expected value of unity. This first demonstration on data of CIB delensing, and of delensing techniques in general, is significant because lensing removal will soon be essential for achieving high-precision constraints on inflationary B-mode polarization.
We present results from the first simulations of networks of Type I Abelian Higgs cosmic strings to include both matter and radiation eras and Cosmic Microwave Background (CMB) constraints. In Type I strings, the string tension is a slowly decreasing function of the ratio of the scalar and gauge mass-squared, $beta$. We find that the mean string separation shows no dependence on $beta$, and that the energy-momentum tensor correlators decrease approximately in proportion to the square of the string tension, with additional O(1) correction factors which asymptote to constants below $beta lesssim 0.01$. Strings in models with low self-couplings can therefore satisfy current CMB bounds at higher symmetry-breaking scales. This is particularly relevant for models where the gauge symmetry is broken in a supersymmetric flat direction, for which the effective self-coupling can be extremely small. If our results can be extrapolated to $beta simeq 10^{-15}$, even strings formed at $10^{16}$ GeV (approximately the grand unification scale in supersymmetric extensions of the Standard Model) can be compatible with CMB constraints.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا