ﻻ يوجد ملخص باللغة العربية
Strain engineering allows the physical properties of materials and devices to be widely tailored, as paradigmatically demonstrated by strained transistors and semiconductor lasers employed in consumer electronics. For this reason, its potential impact on our society has been compared to that of chemical alloying. Although significant progress has been made in the last years on strained nanomaterials, strain fields (which are of tensorial nature, with six independent components) are still mostly used in a scalar and/or static fashion. Here we present a new class of strain actuators which allow the three components of the in-plane stress tensor in a nanomembrane to be independently and reversibly controlled. The actuators are based on monolithic piezoelectric substrates, which are micro-machined via femtosecond-laser processing. Their functionality is demonstrated by programming arbitrary stress states in a semiconductor layer, whose light emission is used as a local and sensitive strain gauge. The results shown in this work open a new route to investigate and make use of strain effects in materials and devices.
Stress and strain are important factors in determining the mechanical, electronic, and optical properties of materials, relating to each other by the materials elasticity or stiffness. Both are represented by second rank field tensors with, in genera
The precise measurement of mechanical stress at the nanoscale is of fundamental and technological importance. In principle, all six independent variables of the stress tensor, which describe the direction and magnitude of compression/tension and shea
We study the coexistence of strain- and charge-mediated magnetoelectric coupling in a cobalt (0-7 nm) wedge on ferroelectric [Pb(Mg$_{1/3}$/Nb$_{2/3}$)O$_{3}$]$_{0.68}$-[PbTiO$_{3}$]$_{0.32}$ (011) using surface-sensitive x-ray magnetic circular dich
Most of the commercially important alloys are multicomponent, producing multiphase microstructures as a result of processing. When the coexisting phases are elastically coherent, the elastic interactions between these phases play a major role in the
The 5d pyrochlore oxide Cd2Re2O7 exhibits successive phase transitions from a cubic pyrochlore structure (phase I) to a tetragonal structure without inversion symmetry below Ts1 of ~200 K (phase II) and further to another noncentrosymmetric tetragona