ﻻ يوجد ملخص باللغة العربية
Penumbral microjets (PJs) are transient narrow bright features in the chromosphere of sunspot penumbrae, first characterized by Katsukawa et al (2007) using the CaII H-line filter on {it Hinode}s Solar Optical Telescope (SOT). It was proposed that the PJs form as a result of reconnection between two magnetic components of penumbra (spines and interspines), and that they could contribute to the transition region (TR) and coronal heating above sunspot penumbrae. We propose a modified picture of formation of PJs based on recent results on internal structure of sunspot penumbral filaments. Using data of a sunspot from {it Hinode}/SOT, High Resolution Coronal Imager, and different passbands of the Atmospheric Imaging Assembly (AIA) onboard the {it Solar Dynamics Observatory}, we examine whether PJs have signatures in the TR and corona. We find hardly any discernible signature of normal PJs in any AIA passbands, except a few of them showing up in the 1600 AA images. However, we discovered exceptionally stronger jets with similar lifetimes but bigger sizes (up to 600 km wide) occurring repeatedly in a few locations in the penumbra, where evidence of patches of opposite polarity fields at the tails of some penumbral filaments is seen in Stokes-V images. These large tail PJs do display signatures in the TR. Whether they have any coronal-temperature plasma is ambiguous. We infer that none of the PJs, including the large tail PJs, directly heat the corona in ARs significantly, but any penumbral jet might drive some coronal heating indirectly via generation of Alfven waves and/or braiding of the coronal field.
We present observations of a precursory signature that would be helpful for understanding the formation process of sunspot penumbrae. The Hinode Solar Optical Telescope successfully captured the entire evolution of a sunspot from the pore to a large
We report observations of bright dots (BDs) in a sunspot penumbra using High Resolution Coronal Imager (Hi-C) data in 193 AA and examine their sizes, lifetimes, speeds, and intensities. The sizes of the BDs are on the order of 1arcsec and are therefo
In this paper, we carry out multiwavelength observations of three recurring jets on 2014 November 7. The jets originated from the same region at the edge of AR 12205 and propagated along the same coronal loop. The eruptions were generated by magnetic
To elucidate the flare trigger mechanism, we have analyzed several flare events which were observed by Hinode/Solar Optical Telescope (SOT), in our previous study. Because of the limitation of SOT field of view, however, only four events in the Hinod
NuSTAR is a highly sensitive focusing hard X-ray (HXR) telescope and has observed several small microflares in its initial solar pointings. In this paper, we present the first joint observation of a microflare with NuSTAR and Hinode/XRT on 2015 April