ترغب بنشر مسار تعليمي؟ اضغط هنا

Comparing XMCD and DFT with STM spin excitation spectroscopy for Fe and Co adatoms on Cu$_{2}$N/Cu(100)

124   0   0.0 ( 0 )
 نشر من قبل Markus Etzkorn
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the magnetic properties of Fe and Co adatoms on a Cu$_{2}$N/Cu(100)-$c(2 times 2)$ surface investigated by x-ray magnetic dichroism measurements and density functional theory (DFT) calculations including the local coulomb interaction. We compare these results with properties formerly deduced from STM spin excitation spectroscopy (SES) performed on the individual adatoms. In particular we focus on the values of the local magnetic moments determined by XMCD compared to the expectation values derived from the description of the SES data.The angular dependence of the projected magnetic moments along the magnetic field, as measured by XMCD, can be understood on the basis of the SES Hamiltonian. In agreement with DFT, the XMCD measurements show large orbital contributions to the total magnetic moment for both magnetic adatoms.



قيم البحث

اقرأ أيضاً

Low-temperature scanning tunneling spectroscopy reveals that the Kondo temperature T_K of Co atoms adsorbed on Cu/Co/Cu(100) multilayers varies between 60 K and 134 K as the Cu film thickness decreases from 20 to 5 atomic layers. The observed change of T_K is attributed to a variation of the density of states at the Fermi level rho_F induced by quantum well states confined to the Cu film. A model calculation based on the quantum oscillations of rho_F at the belly and the neck of the Cu Fermi surface reproduces most of the features in the measured variation of T_K.
Scanning tunnelling microscopy and density functional theory studies of manganese chains adsorbed on Cu$_2$N/Cu (100) reveal an unsuspected electronic edge state at $sim 1$ eV above the Fermi energy. This Tamm-like state is strongly localised to the last Mn atom of the chain and fully spin polarised. However, no equivalence is found for occupied states, and the electronic structure at $sim -1$ eV is mainly spin unpolarised due to the extended $p$-states of the N atoms that mediate the coupling between the Mn atoms in the chain. Odd-numbered Mn chains present an exponentially decreasing direct coupling with distance between the two edges, leading to a vanishing bonding/anti-bonding splitting of states while even-numbered Mn chains present perfect decoupling of both edges due to the the antiferromagnetic ordering of Mn chains.
The Kondo zero bias anomaly of Co adatoms probed by scanning tunneling microscopy is known to depend on the height of the tip above the surface, and this dependence is different on different low index Cu surfaces. On the (100) surface, the Kondo temp erature first decreases then increases as the tip approaches the adatom, while on the (111) surface it is virtually unaffected. These trends are captured by combined density functional theory and numerical renormalization group (DFT+NRG) calculations. The adatoms are found to be described by an S = 1 Anderson model on both surfaces, and ab initio calculations help identify the symmetry of the active d orbitals. We correctly reproduce the Fano lineshape of the zero bias anomaly for Co/Cu(100) in the tunneling regime but not in the contact regime, where it is probably dependent on the details of the tip and contact geometry. The lineshape for Co/Cu(111) is presumably affected by the presence of surface states, which are not included in our method. We also discuss the role of symmetry, which is preserved in our model scattering geometry but most likely broken in experimental conditions.
Heterogeneous atomic magnetic chains are built by atom manipulation on a Cu$_2$N/Cu (100) substrate. Their magnetic properties are studied and rationalized by a combined scanning tunneling microscopy (STM) and density functional theory (DFT) work com pleted by model Hamiltonian studies. The chains are built using Fe and Mn atoms ontop of the Cu atoms along the N rows of the Cu$_2$N surface. Here, we present results for FeMn$_x$ ($x$=1...6) chains emphasizing the evolution of the geometrical, electronic, and magnetic properties with chain size. By fitting our results to a Heisenberg Hamiltonian we have studied the exchange-coupling matrix elements $J$ for different chains. For the shorter chains, $x leq 2$, we have included spin-orbit effects in the DFT calculations, extracting the magnetic anisotropy energy. Our results are also fitted to a simple anisotropic spin Hamiltonian and we have extracted values for the longitudinal-anisotropy $D$ and transversal-anisotropy $E$ constants. These parameters together with the values for $J$ allow us to compute the magnetic excitation energies of the system and to compare them with the experimental data.
Chemisorption of CO on the stepped Cu(211) surface is studied within ab-initio density functional theory (DFT) and scanning tunneling microscopy (STM) imaging as well as manipulation experiments. Theoretically we focus on the experimentally observed ordered (2x1) and (3x1) CO-phases at coverages 1/3, 1/2 and 2/3 monolayer (ML). To obtain also information for isolated CO molecules found randomly distributed at low coverages, we also performed calculations for a hypothetical (3x1) phase with 1/3 ML. The adsorption geometry, the stretching frequencies, the work functions and adsorption energies of the CO molecules in the different phases are presented and compared to experimental data. Initially and up to a coverage of 1/2 ML CO adsorbs upright on the on-top sites at step edge atoms. Determining the most favorable adsorption geometry for the 2/3 ML ordered phase turned out to be nontrivial both from the experimental and the theoretical point of view. Experimentally, both top-bridge and top-top configurations were reported, whereby only the top-top arrangement was firmly established. The calculated adsorption energies and the stretching frequencies favor the top-bridge configuration. The possible existence of both configurations at 2/3 ML is critically discussed on the basis of the presently accessible experimental and theoretical data. In addition, we present observations of STM manipulation experiments and corresponding theoretical results, which show that CO adsorbed on-top of a single Cu-adatom, which is manipulated to a location close to the lower step edge, is stronger bound than CO on-top of a step edge atom.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا