ترغب بنشر مسار تعليمي؟ اضغط هنا

Regular Breathing of Single-Cycle Light Bullets in Mid-IR Filament

94   0   0.0 ( 0 )
 نشر من قبل Victor Kompanets
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S.V. Chekalin




اسأل ChatGPT حول البحث

Experimental and numerical studies of a temporal evolution of a light bullet formed in isotropic LiF by Mid IR femtosecond pulse (2500 to 3250 nm) of power, slightly exceeding the critical power for self-focusing, are presented. For the first time regular oscillations of the light bullet intensity during its propagation in a filament were registered by investigation of induced color centers in LiF. It was revealed that color centers in a single laser pulse filament have a strictly periodic structure with a length of separate sections about 30 mcm, which increases with a laser pulse wavelength decreasing. It was shown that the origin of light bullet modulation is a periodical change of the light field amplitude of an extremely compressed single cycle wave packet in a filament, due to the difference of the wave packet group velocity and the carrier wave phase velocity.



قيم البحث

اقرأ أيضاً

We observe the formation of an intense optical wavepacket fully localized in all dimensions, i.e. both longitudinally (in time) and in the transverse plane, with an extension of a few tens of fsec and microns, respectively. Our measurements show that the self-trapped wave is a X-shaped light bullet spontaneously generated from a standard laser wavepacket via the nonlinear material response (i.e., second-harmonic generation), which extend the soliton concept to a new realm, where the main hump coexists with conical tails which reflect the symmetry of linear dispersion relationship.
Silicon waveguides have enabled large-scale manipulation and processing of near-infrared optical signals on chip. Yet, expanding the bandwidth of guided waves to other frequencies would further increase the functionality of silicon as a photonics pla tform. Frequency multiplexing by integrating additional architectures is one approach to the problem, but this is challenging to design and integrate within the existing form factor due to scaling with the free-space wavelength. Here, we demonstrate that a hexagonal boron nitride (hBN)/silicon hybrid waveguide can enable dual-band operation at both mid-infrared (6.5-7.0 um) and telecom (1.55 um) frequencies, respectively. Our device is realized via lithography-free transfer of hBN onto a silicon waveguide, maintaining near-infrared operation, while mid-infrared waveguiding of the hyperbolic phonon polaritons (HPhPs) in hBN is induced by the index contrast between the silicon waveguide and the surrounding air, thereby eliminating the need for deleterious etching of the hBN. We verify the behavior of HPhP waveguiding in both straight and curved trajectories, and validate their propagation characteristics within an analytical waveguide theoretical framework. This approach exemplifies a generalizable approach based on integrating hyperbolic media with silicon photonics for realizing frequency multiplexing in on-chip photonic systems.
We report measurements that show extreme events in the statistics of resonant radiation emitted from spatiotemporal light bullets. We trace the origin of these extreme events back to instabilities leading to steep gradients in the temporal profile of the intense light bullet that occur during the initial collapse dynamics. Numerical simulations reproduce the extreme valued statistics of the resonant radiation which are found to be intrinsically linked to the simultaneous occurrence of both temporal and spatial self-focusing dynamics. Small fluctuations in both the input energy and in the spatial phase curvature explain the observed extreme behaviour.
Supercontinuum (SC) generation based on ultrashort pulse compression constitutes one of the most promising technologies towards an ultra-wide bandwidth, high-brightness and spatially coherent light sources for applications such as spectroscopy and mi croscopy. Here, multi-octave SC generation in a gas-filled hollow-core antiresonant fiber (HC-ARF) is reported spanning from 200 nm in the deep ultraviolet (DUV) to 4000 nm in the mid-infrared (mid-IR). A measured average output power of 5 mW was obtained by pumping at the center wavelength of the first anti-resonance transmission window (2460 nm) with ~100 fs pulses and an injected pulse energy of ~7-8 {mu}J. The mechanism behind the extreme spectral broadening relies upon intense soliton-plasma nonlinear dynamics which leads to efficient soliton self-compression and phase-matched dispersive wave (DW) emission in the DUV region. The strongest DW is observed at 275 nm having an estimated pulse energy of 1.42 {mu}J, corresponding to 28.4 % of the total output energy. Furthermore, the effect of changing the pump pulse energy and gas pressure on the nonlinear dynamics and their direct impact on SC generation was investigated. The current work paves a new way towards novel investigations of gas-based ultrafast nonlinear optics in the emerging mid-IR spectral regime.
92 - M. Bache , O. Bang , B.B. Zhou 2011
When ultrafast noncritical cascaded second-harmonic generation of energetic femtosecond pulses occur in a bulk lithium niobate crystal optical Cherenkov waves are formed in the near- to mid-IR. Numerical simulations show that the few-cycle solitons r adiate Cherenkov (dispersive) waves in the $lambda=2.2-4.5mic$ range when pumping at $lambda_1=1.2-1.8mic$. The exact phase-matching point depends on the soliton wavelength, and we show that a simple longpass filter can separate the Cherenkov waves from the solitons. The Cherenkov waves are born few-cycle with an excellent Gaussian pulse shape, and the conversion efficiency is up to 25%. Thus, optical Cherenkov waves formed with cascaded nonlinearities could become an efficient source of energetic near- to mid-IR few-cycle pulses.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا