ترغب بنشر مسار تعليمي؟ اضغط هنا

The fate of a red nugget: In-situ star formation of satellites around a massive compact galaxy

123   0   0.0 ( 0 )
 نشر من قبل Takahiro Morishita
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

To study the accretion phase for local massive galaxies, we search accreting satellites around a massive compact galaxy (M_*~3.9x10^10Msun), spectroscopically confirmed (z_spec-1.9213) in the eXtreme Deep Field, which has been originally reported in Szomoru et al. We detect 1369 satellite candidates within the projected virial radius (rvir~300 kpc) of the compact galaxy in the all-combined ACS image with 5sigma-limiting magnitude of mACS~30.6 ABmag, which corresponds to ~1.6x10^7M_sun at the redshift. The photometric redshift measured with 12 multi-band images confirms 34 satellites out of the candidates. Most of the satellites are found to have the rest-frame colors consistent with star forming galaxies. We investigate the relation between stellar mass and star formation rate (the star formation main sequence), and find the steeper slope at the low-mass end (<10^8M_sun), while more massive satellites are consistently on the sequence reported in previous studies. Within the uncertainties of star formation and photometric redshift, we conjecture possible scenarios for the compact galaxy which evolves to a local massive galaxy by way of significant size and mass growth. While merging of the existing total stellar mass of the satellites is not enough to explain the mass growth predicted by observations and simulations, the contribution by in-situ star formation in the satellites would compensate the deficit. Provided that most satellites keep the observed in-situ star formation and then quench before they accrete by, e.g., environmental quenching, the compact galaxy would become a massive early-type galaxy consistent with the local size-mass relation.



قيم البحث

اقرأ أيضاً

Massive galaxies are thought to form in two phases: an initial, early collapse of gas and giant burst of central star formation, followed by the later accretion of material that builds up their stellar and dark matter haloes. The globular cluster sys tems of such galaxies are believed to form in a similar manner. The initial central burst forms metal-rich (red) clusters, while more metal-poor (blue) clusters are brought in by the later accretion of less massive satellites. This formation process is thought to lead the creation of the multimodal optical colour distributions seen in the globular cluster systems of massive galaxies. Here we report HST/ACS observations of the massive relic galaxy NGC 1277 and its globular clusters, a nearby unevolved example of a high redshift red nugget. The g-z cluster colour distribution shows that the globular cluster system of the galaxy is unimodal and uniquely red. This is in strong contrast to normal galaxies of similar and larger stellar mass, whose cluster systems always exhibit (and are generally dominated by) blue clusters. We argue that the globular cluster system of NGC 1277 indicates that the galaxy has undergone little (if any) mass accretion after its initial collapse and use analytic merger trees to show that the total stellar mass accretion is likely less than ~ 10 %. These results confirm that NGC 1277 is a genuine relic galaxy and show that the blue, metal-poor globular clusters constitute an accreted population in present day massive galaxies.
We present Atacama Large Millimeter/submillimeter Array (ALMA) Band 5 observations of a galaxy at $z=1.91$, GDS24569, in search of molecular gas in its vicinity via the [C I] $^3$P$_1$-$^3$P$_0$ line. GDS24569 is a massive ($log M_*/M_odot=11$) passi vely evolving galaxy, and characterized by compact morphology with an effective radius of $sim0.5$ kpc. We apply two blind detection algorithms to the spectral data cubes, and find no promising detection in or around GDS24569 out to projected distance of $sim320$ kpc, while a narrow tentative line ($4.1 sigma$) is identified at $+1200$ km/s by one of the algorithms. From the non-detection of [C I], we place a $3sigma$ upper limit on molecular hydrogen mass, $sim 7.1 times 10^9 M_odot$, which converts to an extremely low gas-to-stellar mass fraction, $< 5 %$. We conduct a spectral energy distribution modeling by including optical-to-far-infrared data, and find a considerably high ($sim0.1%$) dust-to-stellar mass ratio, $sim10$-$100times$ higher than those of local early-type galaxies. In combination with a previous result of an insufficient number of surrounding satellite galaxies, it is suggested that GDS24569 is unlikely to experience significant size evolution via satellite mergers. We discuss possible physical mechanisms that quenched GDS24569.
163 - M. Mapelli 2008
The formation of the massive young stars surrounding SgrA* is still an open question. In this paper, we simulate the infall of an isothermal, turbulent molecular cloud towards the Galactic Centre (GC). As it spirals towards the GC, the molecular clou d forms a small and dense disc around SgrA*. Efficient star formation (SF) is expected to take place in such a dense disc. We model SF by means of sink particles. At ~6x10^5 yr, ~6000 solar masses of stars have formed, and are confined within a thin disc with inner and outer radius of 0.06 and 0.5 pc, respectively. Thus, this preliminary study shows that the infall of a molecular cloud is a viable scenario for the formation of massive stars around SgrA*. Further studies with more realistic radiation physics and SF will be required to better constrain this intriguing scenario.
To understand the formation and quenching processes of local massive red spiral galaxies with $M_{ast} > 10^{10.5}M_{odot}$, we perform a statistical analysis of their spectroscopic and structural properties, and compare them with elliptical and blue spiral galaxies of similar mass. The sample was selected from the stellar mass catalog of galaxies in SDSS DR7, according to their locations on the u-r color-stellar mass diagram. We find that red spirals harbor compact cores with high stellar mass surface densities measured by $Sigma_1$ and they are bulge-dominated. Particularly, the red spirals, especially their bulges follow the $Sigma_1$-$M_{ast}$ ridgeline for quenched galaxies. Furthermore, the red spirals show similarly large central D$_n(4000)$, high [Mg/Fe] and dark matter halo mass to ellipticals. These results suggest that the bulges of red spirals formed within a short timescale before redshift ~ 1-2 and were quenched via a fast mode, similar to ellipticals. Careful examinations of the optical morphologies reveal that ~70% of red spirals show strong bars, rings/shells and even merging features, which suggests that interactions or mergers might have played an important role in the formation of red spirals. In contrast, most of the massive blue spirals have completely different spectral and structural properties from red spirals. However, the blue spirals with high $Sigma_1$ ($Sigma_1 > 10^{9.5} M_odot , {rm kpc}^{-2}$) show similar structural and morphological properties, as well as similar halo mass and HI mass to red spirals. We discuss rejuvenation from red to blue as a possible explanation for these high $Sigma_1$ blue spirals.
We investigate the star formation histories (SFHs) of massive red spiral galaxies with stellar mass $M_ast>10^{10.5}M_odot$, and make comparisons with blue spirals and red ellipticals of similar masses. We make use of the integral field spectroscopy from the SDSS-IV/DR15 MaNGA sample, and estimate spatially resolved SFHs and stellar population properties of each galaxy by applying a Bayesian spectral fitting code to the MaNGA spectra. We find that both red spirals and red ellipticals have experienced only one major star formation episode at early times, and the result is independent of the adopted SFH model. On average, more than half of their stellar masses were formed $>$10 Gyrs ago, and more than 90% were formed $>6$ Gyrs ago. The two types of galaxies show similarly flat profiles in a variety of stellar population parameters: old stellar ages indicated by $D4000$ (the spectral break at around 4000AA), high stellar metallicities, large Mgb/Fe ratios indicating fast formation, and little stellar dust attenuation. In contrast, although blue spirals also formed their central regions $>$10 Gyrs ago, both their central regions and outer disks continuously form stars over a long timescale. Our results imply that, massive red spirals are likely to share some common processes of formation (and possibly quenching) with massive red ellipticals in the sense that both types were formed at $z > 2$ through a fast formation process.Possible mechanisms for the formation and quenching of massive red spirals are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا