ﻻ يوجد ملخص باللغة العربية
Convolutional Neural Networks have achieved state-of-the-art performance on a wide range of tasks. Most benchmarks are led by ensembles of these powerful learners, but ensembling is typically treated as a post-hoc procedure implemented by averaging independently trained models with model variation induced by bagging or random initialization. In this paper, we rigorously treat ensembling as a first-class problem to explicitly address the question: what are the best strategies to create an ensemble? We first compare a large number of ensembling strategies, and then propose and evaluate novel strategies, such as parameter sharing (through a new family of models we call TreeNets) as well as training under ensemble-aware and diversity-encouraging losses. We demonstrate that TreeNets can improve ensemble performance and that diverse ensembles can be trained end-to-end under a unified loss, achieving significantly higher oracle accuracies than classical ensembles.
In low signal-to-noise ratio conditions, it is difficult to effectively recover the magnitude and phase information simultaneously. To address this problem, this paper proposes a two-stage algorithm to decouple the joint optimization problem w.r.t. m
Recent results in the literature indicate that a residual network (ResNet) composed of a single residual block outperforms linear predictors, in the sense that all local minima in its optimization landscape are at least as good as the best linear pre
Diabetic retinopathy (DR) is one of the most common eye conditions among diabetic patients. However, vision loss occurs primarily in the late stages of DR, and the symptoms of visual impairment, ranging from mild to severe, can vary greatly, adding t
Random forests (RF) and deep networks (DN) are two of the most popular machine learning methods in the current scientific literature and yield differing levels of performance on different data modalities. We wish to further explore and establish the
As an essential ingredient of modern deep learning, attention mechanism, especially self-attention, plays a vital role in the global correlation discovery. However, is hand-crafted attention irreplaceable when modeling the global context? Our intrigu