ﻻ يوجد ملخص باللغة العربية
We present the results of mechanical characterizations of many different high-quality optical coatings made of ion-beam-sputtered titania-doped tantala and silica, developed originally for interferometric gravitational-wave detectors. Our data show that in multi-layer stacks (like high-reflection Bragg mirrors, for example) the measured coating dissipation is systematically higher than the expectation and is correlated with the stress condition in the sample. This has a particular relevance for the noise budget of current advanced gravitational-wave interferometers, and, more generally, for any experiment involving thermal-noise limited optical cavities.
We report on the results of an extensive campaign of optical and mechanical characterization of the ion-beam sputtered oxide layers (Ta$_2$O$_5$, TiO$_2$, Ta$_2$O$_5$-TiO$_2$, SiO$_2$) within the high-reflection coatings of the Advanced LIGO, Advance
Coating thermal noise is a fundamental limit for precision experiments based on optical and quantum transducers. In this review, after a brief overview of the techniques for coating thermal noise measurements, we present the latest world-wide researc
The sensitivity of current and planned gravitational wave interferometric detectors is limited, in the most critical frequency region around 100 Hz, by a combination of quantum noise and thermal noise. The latter is dominated by Brownian noise: therm
Optical tweezers are an invaluable tool for non-contact trapping and micro-manipulation, but their ability to facilitate high-throughput volumetric microrheology of biological samples for mechanobiology research is limited by the precise alignment as
In this paper we show that state-of-the-art commercial off-the-shelf Flash memory chip technology (20 nm technology node with multi-level cells) is quite sensitive to ionizing radiation. We find that the fail-bit count in these Flash chips starts to