ﻻ يوجد ملخص باللغة العربية
Active Galactic Nuclei (AGN) vary in their brightness across all wavelengths. Moreover, longer wavelength ultraviolet - optical continuum light curves appear to be delayed with respect to shorter wavelength light curves. A simple way to model these delays is by assuming thermal reprocessing of a variable point source (a lamp post) by a blackbody accretion disc. We introduce a new method, CREAM (textbf{C}ontinuum textbf{RE}processed textbf{A}GN textbf{M}arkov Chain Monte Carlo), that models continuum variations using this lamp post model. The disc light curves lag the lamp post emission with a time delay distribution sensitive to the disc temperature-radius profile and inclination. We test CREAMs ability to recover both inclination and product of black hole mass and accretion rate $mmdot$, and show that the code is also able to infer the shape of the driving light curve. CREAM is applied to synthetic light curves expected from 1000 second exposures of a 17th magnitude AGN with a 2m telescope in Sloan g and i bands with signal to noise of 500 - 900 depending on the filter and lunar phase. We also tests CREAM on poorer quality g and i light curves with SNR = 100. We find in the high SNR case that CREAM can recover the accretion disc inclination to within an uncertainty of 5 degrees and an $mmdot$ to within 0.04 dex.
We performed the observation of the flux densities of SgrA* at 90 and 102GHz in order to detect the time lag between these frequencies using the Nobeyama Millimeter Array, which was previously reported at lower frequencies. We detected a radio flare
We performed the observation of the flux densities of Sgr A* at 90 and 102 GHz on 6 April 2005 using the Nobeyama Millimeter Array in order to detect the time lag between these frequencies. We constructed light curves covering a few hour with 1 min b
In this work, which is a continuation of Castello-Mor et al. (2016), we present new X-ray and infrared (IR) data for a sample of active galactic nuclei (AGN) covering a wide range in Eddington ratio over a small luminosity range. In particular, we ri
With the advent of high-cadence and multi-band photometric monitoring facilities, continuum reverberation mapping is becoming of increasing importance to measure the physical size of quasar accretion disks. The method is based on the measurement of t
Motivated by upcoming photometric and spectroscopic surveys (Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST), Manuakea Spectroscopic Explorer), we design the statistical proxies to measure the cadence effects on active galactic nucle