ﻻ يوجد ملخص باللغة العربية
Laming (1990) predicted that the narrow Balmer line core of the ~3000 km/s shock in the SN 1006 remnant would be significantly polarized due to electron and proton impact polarization. Here, based on deep spectrally resolved polarimetry obtained with the European Southern Observatory (ESO)s Very Large Telescope (VLT), we report the discovery of polarized line emission of polarization degree approx 1.3 percent with position angle orthogonal to the SNR filament. Correcting for an unpolarized broad line component, the implied narrow line polarization is approx 2.0 percent, close to the predictions of Laming (1990). The predicted polarization is primarily sensitive to shock velocity and post-shock temperature equilibration. By measuring polarization for the SN1006 remnant, we validate and enable a new diagnostic that has important applications in a wide variety of astrophysical situations, such as shocks, intense radiation fields, high energy particle streams and conductive interfaces.
Based on the XMM-Newton large program on SN1006 and our newly developed spatially resolved spectroscopy tools (Paper~I), we study the thermal emission from ISM and ejecta of SN1006 by analyzing the spectra extracted from 583 tessellated regions domin
Following up on a faint detection of a near-infrared (NIR) source at the position of the X-ray thermal isolated neutron star RX J0806.4-4123, we present new Hubble Space Telescope observations in the H-band. The NIR source is unambiguously detected w
The anomalous X-ray pulsar XTE J1810$-$197 was the first magnetar found to emit pulsed radio emission. After spending almost a decade in a quiescent, radio-silent state, the magnetar was reported to have undergone a radio outburst in December, 2018.
We present ~400ks NuSTAR observations of the northeast (NE) and southwest (SW) non-thermal limbs of the Galactic SNR SN1006. We discovered three sources with X-ray emission detected at >50keV. Two of them are identified as background AGN. We extract
Three dimensional magnetohydrodynamical simulations were carried out in order to perform a new polarization study of the radio emission of the supernova remnant SN 1006. These simulations consider that the remnant expands into a turbulent interstella