ﻻ يوجد ملخص باللغة العربية
We study, by rigorous Renormalization Group methods, the interacting Aubry-Andre model for fermions in the extended regime. We show that the infinitely many gaps of the single particle spectrum persist in presence of weak many body interactions, despite the presence of Umklapp large momentum processes connecting the Fermi points. The width of the gaps is strongly renormalized through critical exponents which verify exact scaling relations.
Here we study the phase diagram of the Aubry-Andre-Harper model in the presence of strong interactions as the strength of the quasiperiodic potential is varied. Previous work has established the existence of many-body localized phase at large potenti
The many-body localization transition in quasiperiodic systems has been extensively studied in recent ultracold atom experiments. At intermediate quasiperiodic potential strength, a surprising Griffiths-like regime with slow dynamics appears in the a
The Aubry-Andre model is a one-dimensional lattice model for quasicrystals with localized and delocalized phases. At the localization transition point, the system displays fractal spectrum, which relates to the Hofstadter butterfly. In this work, we
We investigate the localization properties of a spin chain with an antiferromagnetic nearest-neighbour coupling, subject to an external quasiperiodic on-site magnetic field. The quasiperiodic modulation interpolates between two paradigmatic models, n
We present a quantitative analysis of two-particle interaction effects in generalized, one-dimensional Aubry-Andre-Harper models with the Fermi energy placed in one of the band gaps. We investigate systems with periodic as well as open boundary condi