ترغب بنشر مسار تعليمي؟ اضغط هنا

The First Millimeter Detection of a Non-Accreting Ultracool Dwarf

49   0   0.0 ( 0 )
 نشر من قبل Peter Williams
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف P. K. G. Williams




اسأل ChatGPT حول البحث

The well-studied M9 dwarf TVLM 513-46546 is a rapid rotator (P_rot ~ 2 hr) hosting a stable, dipolar magnetic field of ~3 kG surface strength. Here we report its detection with ALMA at 95 GHz at a mean flux density of $56 pm 12$ uJy, making it the first ultracool dwarf detected in the millimeter band, excluding young, disk-bearing objects. We also report flux density measurements from unpublished archival VLA data and new optical monitoring data from the Liverpool Telescope. The ALMA data are consistent with a power-law radio spectrum that extends continuously between centimeter and millimeter wavelengths. We argue that the emission is due to the synchrotron process, excluding thermal, free-free, and electron cyclotron maser emission as possible sources. During the interval of the ALMA observation that phases with the maximum of the objects optical variability, the flux density is higher at a ~1.8 sigma significance level. These early results show how ALMA opens a new window for studying the magnetic activity of ultracool dwarfs, particularly shedding light on the particle acceleration mechanism operating in their immediate surroundings.



قيم البحث

اقرأ أيضاً

118 - B. Stelzer 2021
We present the first X-ray detections of ultracool dwarfs (UCDs) from the first all-sky survey of the extended ROentgen Survey with an Imaging Telescope Array (eROSITA) onboard the Russian Spektrum-Roentgen-Gamma (SRG) mission. We use three publicly available input catalogs of spectroscopically confirmed UCDs and Gaia-selected UCD candidates that together comprise nearly 20000 objects. We first extracted all X-ray sources from the catalog of the first eROSITA survey, eRASS1, that have a UCD or candidate within three times their positional uncertainty. Then we examined all Gaia objects in the vicinity of these 96 X-ray sources and we associated them to the most plausible counterpart on the basis of their spatial separation to the X-ray position and their multiwavelength properties. This way we find 40 UCDs that have a secure identification with an X-ray source and 18 plausible UCD X-ray emitters. Twenty-one of these X-ray emitting UCDs have a spectroscopic confirmation, while the others have been selected based on Gaia photometry and we computed spectral types from the G-J color. The spectral types of the X-ray emitting UCDs and candidates range between M5 and M9, and the distances range from 3.5 to 190 pc. The majority of the UCDs from the eRASS1 sample show a ratio of X-ray to bolometric luminosity well above the canonical saturation limit of log (Lx/Lbol) ~ -3. For the two most extreme outliers, we showed through an analysis of the eRASS1 light curve that these high values are due to flaring activity. The X-ray spectra of the two brightest objects both reveal an emission-measure weighted plasma temperature of kT ~ 0.75 keV. These observations demonstrate the potential of eROSITA for advancing our knowledge on the faint coronal X-ray emission from UCDs by building statistical samples for which the average X-ray brightness, flares, and coronal temperatures can be derived.
OTS44 is one of only four free-floating planets known to have a disk. We have previously shown that it is the coolest and least massive known free-floating planet ($sim$12 M$_{rm Jup}$) with a substantial disk that is actively accreting. We have obta ined Band 6 (233 GHz) ALMA continuum data of this very young disk-bearing object. The data shows a clear unresolved detection of the source. We obtained disk-mass estimates via empirical correlations derived for young, higher-mass, central (substellar) objects. The range of values obtained are between 0.07 and 0.63 M$_{oplus}$ (dust masses). We compare the properties of this unique disk with those recently reported around higher-mass (brown dwarfs) young objects in order to infer constraints on its mechanism of formation. While extreme assumptions on dust temperature yield disk-mass values that could slightly diverge from the general trends found for more massive brown dwarfs, a range of sensible values provide disk masses compatible with a unique scaling relation between $M_{rm dust}$ and $M_{*}$ through the substellar domain down to planetary masses.
179 - S. Yu , G. Hallinan , J.G. Doyle 2010
Recently unanticipated magnetic activity in ultracool dwarfs (UCDs, spectral classes later than M7) have emerged from a number of radio observations. The highly (up to 100%) circularly polarized nature and high brightness temperature of the emission has been interpreted as an effective amplification mechanism of the high-frequency electromagnetic waves, the electron cyclotron maser instability (ECMI). In order to understand the magnetic topology and the properties of the radio emitting region and associated plasmas in these ultracool dwarfs and interpret the origin of radio pulses and their radiation mechanism, we built an active region model, based on the rotation of the UCD and the ECMI mechanism. ECMI mechanism is responsible for the radio bursts from the magnetic tubes and the rotation of the dwarf can modulate the integral of flux with respect to time. The high degree of variability in the brightness and the diverse profile of pulses can be interpreted in terms of a large-scale hot active region with extended magnetic structure existing in the magnetosphere of TVLM 513-46546. We suggest the time profile of the radio light curve is in the form of power law in the model. The radio emitting region consists of complicated substructure. With this model, we can determine the nature (e.g. size, temperature, density) of the radio emitting region and plasma. The magnetic topology can also be constrained. We compare our predicted X-ray flux with Chandra X-ray observation of TVLM 513-46546. Although the X-ray detection is only marginally significant, our predicted flux is significantly lower than the observed flux. We suggest more observations at multi-wavelength will help us understand the magnetic field structure and plasma behavior on the ultracool dwarf.
Empirical trends in stellar X-ray and radio luminosities suggest that low mass ultracool dwarfs (UCDs) should not produce significant radio emission. Defying these expectations, strong non-thermal emission has been observed in a few UCDs in the 1-10 GHz range, with a variable component often attributed to global aurorae and a steady component attributed to other processes such as gyrosynchrotron emission. While both auroral and gyrosynchrotron emission peak near the critical frequency, only the latter radiation is expected to extend into millimeter wavelengths. We present ALMA 97.5 GHz and VLA 33 GHz observations of a small survey of 5 UCDs. LP 349-25, LSR J1835+3259, and NLTT 33370 were detected at 97.5 GHz, while LP 423-31 and LP 415-20 resulted in non-detections at 33 GHz. A significant flare was observed in NLTT 33370 that reached a peak flux of 4880 +/- 360 microJy, exceeding the quiescent flux by nearly an order of magnitude, and lasting 20 seconds. These ALMA observations show bright 97.5 GHz emission with spectral indices ranging from alpha = -0.76 to alpha = -0.29, suggestive of optically thin gyrosynchrotron emission. If such emission traces magnetic reconnection events, then this could have consequences for both UCD magnetic models and the atmospheric stability of planets in orbit around them. Overall, our results provide confirmation that gyrosynchrotron radiation in radio loud UCDs can remain detectable into the millimeter regime.
65 - S. Scaringi 2017
White dwarfs are often found in binary systems with orbital periods ranging from tens of minutes to hours in which they can accrete gas from their companion stars. In about 15% of these binaries, the magnetic field of the white dwarf is strong enough ($geq 10^6$ Gauss) to channel the accreted matter along field lines onto the magnetic poles. The remaining systems are referred to as non-magnetic, since to date there has been no evidence that they have a dynamically significant magnetic field. Here we report an analysis of archival optical observations of the non-magnetic accreting white dwarf in the binary system MV Lyrae (hereafter MV Lyr), whose lightcurve displayed quasi-periodic bursts of $approx 30$ minutes duration every $approx 2$ hours. The observations indicate the presence of an unstable magnetically-regulated accretion mode, revealing the existence of magnetically gated accretion, where disk material builds up around the magnetospheric boundary (at the co-rotation radius) and then accretes onto the white dwarf, producing bursts powered by the release of gravitational potential energy. We infer a surface magnetic field strength for the white dwarf in MV Lyr between $2 times 10^4 leq B leq 10^5$ Gauss, too low to be detectable by other current methods. Our discovery provides a new way of studying the strength and evolution of magnetic fields in accreting white dwarfs and extends the connections between accretion onto white dwarfs, young stellar objects and neutron stars, for which similar magnetically gated accretion cysles have been identified.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا