ترغب بنشر مسار تعليمي؟ اضغط هنا

Handcrafted Local Features are Convolutional Neural Networks

74   0   0.0 ( 0 )
 نشر من قبل Zhenzhong Lan
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Image and video classification research has made great progress through the development of handcrafted local features and learning based features. These two architectures were proposed roughly at the same time and have flourished at overlapping stages of history. However, they are typically viewed as distinct approaches. In this paper, we emphasize their structural similarities and show how such a unified view helps us in designing features that balance efficiency and effectiveness. As an example, we study the problem of designing efficient video feature learning algorithms for action recognition. We approach this problem by first showing that local handcrafted features and Convolutional Neural Networks (CNNs) share the same convolution-pooling network structure. We then propose a two-stream Convolutional ISA (ConvISA) that adopts the convolution-pooling structure of the state-of-the-art handcrafted video feature with greater modeling capacities and a cost-effective training algorithm. Through custom designed network structures for pixels and optical flow, our method also reflects distinctive characteristics of these two data sources. Our experimental results on standard action recognition benchmarks show that by focusing on the structure of CNNs, rather than end-to-end training methods, we are able to design an efficient and powerful video feature learning algorithm.



قيم البحث

اقرأ أيضاً

There is a warning light for the loss of plant habitats worldwide that entails concerted efforts to conserve plant biodiversity. Thus, plant species classification is of crucial importance to address this environmental challenge. In recent years, the re is a considerable increase in the number of studies related to plant taxonomy. While some researchers try to improve their recognition performance using novel approaches, others concentrate on computational optimization for their framework. In addition, a few studies are diving into feature extraction to gain significantly in terms of accuracy. In this paper, we propose an effective method for the leaf recognition problem. In our proposed approach, a leaf goes through some pre-processing to extract its refined color image, vein image, xy-projection histogram, handcrafted shape, texture features, and Fourier descriptors. These attributes are then transformed into a better representation by neural network-based encoders before a support vector machine (SVM) model is utilized to classify different leaves. Overall, our approach performs a state-of-the-art result on the Flavia leaf dataset, achieving the accuracy of 99.58% on test sets under random 10-fold cross-validation and bypassing the previous methods. We also release our codes (Scripts are available at https://github.com/dinhvietcuong1996/LeafRecognition) for contributing to the research community in the leaf classification problem.
We present an approach that combines automatic features learned by convolutional neural networks (CNN) and handcrafted features computed by the bag-of-visual-words (BOVW) model in order to achieve state-of-the-art results in facial expression recogni tion. To obtain automatic features, we experiment with multiple CNN architectures, pre-trained models and training procedures, e.g. Dense-Sparse-Dense. After fusing the two types of features, we employ a local learning framework to predict the class label for each test image. The local learning framework is based on three steps. First, a k-nearest neighbors model is applied in order to select the nearest training samples for an input test image. Second, a one-versus-all Support Vector Machines (SVM) classifier is trained on the selected training samples. Finally, the SVM classifier is used to predict the class label only for the test image it was trained for. Although we have used local learning in combination with handcrafted features in our previous work, to the best of our knowledge, local learning has never been employed in combination with deep features. The experiments on the 2013 Facial Expression Recognition (FER) Challenge data set, the FER+ data set and the AffectNet data set demonstrate that our approach achieves state-of-the-art results. With a top accuracy of 75.42% on FER 2013, 87.76% on the FER+, 59.58% on AffectNet 8-way classification and 63.31% on AffectNet 7-way classification, we surpass the state-of-the-art methods by more than 1% on all data sets.
Convolutional Neural Networks (CNNs) are well established models capable of achieving state-of-the-art classification accuracy for various computer vision tasks. However, they are becoming increasingly larger, using millions of parameters, while they are restricted to handling images of fixed size. In this paper, a quantization-based approach, inspired from the well-known Bag-of-Features model, is proposed to overcome these limitations. The proposed approach, called Convolutional BoF (CBoF), uses RBF neurons to quantize the information extracted from the convolutional layers and it is able to natively classify images of various sizes as well as to significantly reduce the number of parameters in the network. In contrast to other global pooling operators and CNN compression techniques the proposed method utilizes a trainable pooling layer that it is end-to-end differentiable, allowing the network to be trained using regular back-propagation and to achieve greater distribution shift invariance than competitive methods. The ability of the proposed method to reduce the parameters of the network and increase the classification accuracy over other state-of-the-art techniques is demonstrated using three image datasets.
Modern machine learning models for computer vision exceed humans in accuracy on specific visual recognition tasks, notably on datasets like ImageNet. However, high accuracy can be achieved in many ways. The particular decision function found by a mac hine learning system is determined not only by the data to which the system is exposed, but also the inductive biases of the model, which are typically harder to characterize. In this work, we follow a recent trend of in-depth behavioral analyses of neural network models that go beyond accuracy as an evaluation metric by looking at patterns of errors. Our focus is on comparing a suite of standard Convolutional Neural Networks (CNNs) and a recently-proposed attention-based network, the Vision Transformer (ViT), which relaxes the translation-invariance constraint of CNNs and therefore represents a model with a weaker set of inductive biases. Attention-based networks have previously been shown to achieve higher accuracy than CNNs on vision tasks, and we demonstrate, using new metrics for examining error consistency with more granularity, that their errors are also more consistent with those of humans. These results have implications both for building more human-like vision models, as well as for understanding visual object recognition in humans.
Verifying the identity of a person using handwritten signatures is challenging in the presence of skilled forgeries, where a forger has access to a persons signature and deliberately attempt to imitate it. In offline (static) signature verification, the dynamic information of the signature writing process is lost, and it is difficult to design good feature extractors that can distinguish genuine signatures and skilled forgeries. This reflects in a relatively poor performance, with verification errors around 7% in the best systems in the literature. To address both the difficulty of obtaining good features, as well as improve system performance, we propose learning the representations from signature images, in a Writer-Independent format, using Convolutional Neural Networks. In particular, we propose a novel formulation of the problem that includes knowledge of skilled forgeries from a subset of users in the feature learning process, that aims to capture visual cues that distinguish genuine signatures and forgeries regardless of the user. Extensive experiments were conducted on four datasets: GPDS, MCYT, CEDAR and Brazilian PUC-PR datasets. On GPDS-160, we obtained a large improvement in state-of-the-art performance, achieving 1.72% Equal Error Rate, compared to 6.97% in the literature. We also verified that the features generalize beyond the GPDS dataset, surpassing the state-of-the-art performance in the other datasets, without requiring the representation to be fine-tuned to each particular dataset.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا