ﻻ يوجد ملخص باللغة العربية
We propose a novel approach to enhance the discriminability of Convolutional Neural Networks (CNN). The key idea is to build a tree structure that could progressively learn fine-grained features to distinguish a subset of classes, by learning features only among these classes. Such features are expected to be more discriminative, compared to features learned for all the classes. We develop a new algorithm to effectively learn the tree structure from a large number of classes. Experiments on large-scale image classification tasks demonstrate that our method could boost the performance of a given basic CNN model. Our method is quite general, hence it can potentially be used in combination with many other deep learning models.
Fine-grained visual classification is a challenging task that recognizes the sub-classes belonging to the same meta-class. Large inter-class similarity and intra-class variance is the main challenge of this task. Most exiting methods try to solve thi
We introduce RP2K, a new large-scale retail product dataset for fine-grained image classification. Unlike previous datasets focusing on relatively few products, we collect more than 500,000 images of retail products on shelves belonging to 2000 diffe
Motivated by the desire to exploit patterns shared across classes, we present a simple yet effective class-specific memory module for fine-grained feature learning. The memory module stores the prototypical feature representation for each category as
Fine-grained classification is a challenging problem, due to subtle differences among highly-confused categories. Most approaches address this difficulty by learning discriminative representation of individual input image. On the other hand, humans c
Discriminative localization is essential for fine-grained image classification task, which devotes to recognizing hundreds of subcategories in the same basic-level category. Reflecting on discriminative regions of objects, key differences among diffe