ﻻ يوجد ملخص باللغة العربية
Total internal reflection (TIR) is a ubiquitous phenomenon used in photonic devices ranging from waveguides and resonators to lasers and optical sensors. Controlling this phenomenon and light confinement are keys to the future integration of nanoelectronics and nanophotonics on the same silicon platform. We introduced the concept of relaxed total internal reflection in 2014 to control evanescent waves generated during TIR. These unchecked evanescent waves are the fundamental reason photonic devices are inevitably diffraction-limited and cannot be miniaturized. Our key design concept is the engineered anisotropy of the medium into which the evanescent wave extends thus allowing for skin depth engineering without any metallic components. In this article, we give an overview of our approach and compare it to key classes of photonic devices such as plasmonic waveguides, photonic crystal waveguides and slot waveguides. We show how our work can overcome a long standing issue in photonics nanoscale light confinement with fully transparent dielectric media.
A non-invasive, in-situ calibration method for Total Internal Reflection Microscopy (TIRM) based on optical tweezing is presented which greatly expands the capabilities of this technique. We show that by making only simple modifications to the basic
In the present work we theoretically investigated the excitation of surface plasmon-polaritons (SPPs) in deformed graphene by attenuated total reflection method. We considered the Otto geometry for SPPs excitation in graphene. Efficiency of SPPs exci
Single particle tracking has found broad applications in the life and physical sciences, enabling the observation and characterisation of nano- and microscopic motion. Fluorescence-based approaches are ideally suited for high-background environments,
In situ observation of precipitation or phase separation induced by solvent addition is important in studying its dynamics. Combined with optical and fluorescence microscopy, microfluidic devices have been leveraged in studying the phase separation i
Topological photonics has emerged as a novel route to engineer the flow of light. Topologically-protected photonic edge modes, which are supported at the perimeters of topologically-nontrivial insulating bulk structures, have been of particular inter