ﻻ يوجد ملخص باللغة العربية
First order phase transitions in the early Universe generate gravitational waves, which may be observable in future space-based gravitational wave observatiories, e.g. the European eLISA satellite constellation. The gravitational waves provide an unprecedented direct view of the Universe at the time of their creation. We study the generation of the gravitational waves during a first order phase transition using large-scale simulations of a model consisting of relativistic fluid and an order parameter field. We observe that the dominant source of gravitational waves is the sound generated by the transition, resulting in considerably stronger radiation than earlier calculations have indicated.
We survey systematically the general parametrisations of particle-physics models for a first-order phase transition in the early universe, including models with polynomial potentials both with and without barriers at zero temperature, and Coleman-Wei
We show how the generation of right-handed neutrino masses in Majoron models may be associated with a first-order phase transition and accompanied by the production of a stochastic background of gravitational waves (GWs). We explore different energy
Within a recently proposed classically conformal model, in which the generation of neutrino masses is linked to spontaneous scale symmetry breaking, we investigate the associated phase transition and find it to be of strong first order with a substan
False vacuum decay in quantum mechanical first order phase transitions is a phenomenon with wide implications in cosmology, and presents interesting theoretical challenges. In the standard approach, it is assumed that false vacuum decay proceeds thro
Gravitational waves (GWs) from strong first-order phase transitions (SFOPTs) in the early Universe are a prime target for upcoming GW experiments. In this paper, I construct novel peak-integrated sensitivity curves (PISCs) for these experiments, whic