ﻻ يوجد ملخص باللغة العربية
We introduce a polynomial time algorithm for optimizing the class of star-convex functions, under no restrictions except boundedness on a region about the origin, and Lebesgue measurability. The algorithms performance is polynomial in the requested number of digits of accuracy, contrasting with the previous best known algorithm of Nesterov and Polyak that has exponential dependence, and that further requires Lipschitz second differentiability of the function, but has milder dependence on the dimension of the domain. Star-convex functions constitute a rich class of functions generalizing convex functions to new parameter regimes, and which confound standard variants of gradient descent; more generally, we construct a family of star-convex functions where gradient-based algorithms provably give no information about the location of the global optimum. We introduce a new randomized algorithm for finding cutting planes based only on function evaluations, where, counterintuitively, the algorithm must look outside the feasible region to discover the structure of the star-convex function that lets it compute the next cut of the feasible region. We emphasize that the class of star-convex functions we consider is as unrestricted as possible: the class of Lebesgue measurable star-convex functions has theoretical appeal, introducing to the domain of polynomial-time algorithms a huge class with many interesting pathologies. We view our results as a step forward in understanding the scope of optimization techniques beyond the garden of convex optimization and local gradient-based methods.
Given a separation oracle $mathsf{SO}$ for a convex function $f$ that has an integral minimizer inside a box with radius $R$, we show how to find an exact minimizer of $f$ using at most (a) $O(n (n + log(R)))$ calls to $mathsf{SO}$ and $mathsf{poly}(
Arithmetic automata recognize infinite words of digits denoting decompositions of real and integer vectors. These automata are known expressive and efficient enough to represent the whole set of solutions of complex linear constraints combining both
We analyze a class of sublinear functionals which characterize the interior and the exterior of a convex cone in a normed linear space.
Coreset is usually a small weighted subset of $n$ input points in $mathbb{R}^d$, that provably approximates their loss function for a given set of queries (models, classifiers, etc.). Coresets become increasingly common in machine learning since exis
Joint operation of power, water, and heating networks is expected to improve overall efficiency of infrastructure while also known as a challenging problem, due to complex couplings of electric, hydraulic, and thermal models that are nonlinear and no