ترغب بنشر مسار تعليمي؟ اضغط هنا

Force law in material media and quantum phases

52   0   0.0 ( 0 )
 نشر من قبل Alexander Kholmetskii
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that the known expressions for the force on a point-like dipole are incompatible with the relativistic transformation of force, and in this respect we apply the Lagrangian approach to the derivation of the correct equation for force on a small electric/magnetic dipole. The obtained expression for the generalized momentum of a moving dipole predicts two novel quantum effects with non-topological and non-dynamic phases, when an electric dipole is moving in an electric field, and when a magnetic dipole is moving in a magnetic field, correspondingly. The implications of the obtained results are discussed.



قيم البحث

اقرأ أيضاً

We analyze the laws of conservation of momentum and angular momentum in classical electrodynamics of material media with bound charges, and explore the possibility to describe the properties of such media via a discrete set of point-like charges of z ero size (as imposed by special relativity), and via continuous charge/current distributions. This way we put a question: do we have to recognize the infinite fields at the location of elementary charges as the essential physical requirement, or such infinite fields can be ignored via introduction of continuous charge distribution? In order to answer this question, we consider the interaction of a homogeneously charged insulating plate with a compact magnetic dipole, moving along the plate. We arrive at the apparent violation of the angular momentum conservation law and show that this law is re-covered, when the electric field at the location of each elementary charge of the plate is taken infinite. This result signifies that the description of electromagnetic properties of material media via the continuous charge and current distributions is not a universal approximation, and at the fundamental level, we have to deal with a system of elementary discrete charges of zero size, at least in the analysis of laws of conservation of momentum and angular momentum.
99 - C. A. Brannen 2009
We derive the exact equations of motion (in Newtonian, F=ma, form) for test masses in Schwarzschild and Gullstrand-Painleve coordinates. These equations of motion are simpler than the usual geodesic equations obtained from Christoffel tensors in that the affine parameter is eliminated. The various terms can be compared against tests of gravity. In force form, gravity can be interpreted as resulting from a flux of superluminal particles (gravitons). We show that the first order relativistic correction to Newtons gravity results from a two graviton interaction.
In this work we suggest a simple theoretical solution of the Mpemba effect in full agreement with known experimental data. This solution follows simply as an especial approximation (linearization) of the usual heat (transfer) equation, precisely line arization of the second derivation of the space part of the temperature function (as it is well-known Newton cooling law can be considered as the effective approximation of the heat (transfer) equation for constant space part of the temperature function).
189 - Boris Tatischeff 2011
Using the discrete-scale invariance theory, we show that the coupling constants of fundamental forces, the atomic masses and energies, and the elementary particle masses, obey to the fractal properties.
Understanding the momentum of light when propagating through optical media is not only fundamental for studies as varied as classical electrodynamics and polaritonics in condensed matter physics, but also for important applications such as optical-fo rce manipulations and photovoltaics. From a microscopic perspective, an optical medium is in fact a complex system that can split the light momentum into the electromagnetic field, as well as the material electrons and the ionic lattice. Here, we disentangle the partition of momentum associated with light propagation in optical media, and develop a quantum theory to explicitly calculate its distribution. The material momentum here revealed, which is distributed among electrons and ionic lattice, leads to the prediction of unexpected phenomena. In particular, the electron momentum manifests through an intrinsic DC current, and strikingly, we find that under certain conditions this current can be along the photonic wave vector, implying an optical pulling effect on the electrons. Likewise, an optical pulling effect on the lattice can also be observed, such as in graphene during plasmon propagation. We also predict the emergence of boundary electric dipoles associated with light transmission through finite media, offering a microscopic explanation of optical pressure on material boundaries.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا