ترغب بنشر مسار تعليمي؟ اضغط هنا

Isogonal Deformation of Discrete Plane Curves and Discrete Burgers Hierarchy

128   0   0.0 ( 0 )
 نشر من قبل Kenji Kajiwara
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study deformations of plane curves in the similarity geometry. It is known that continuous deformations of smooth curves are described by the Burgers hierarchy. In this paper, we formulate the discrete deformation of discrete plane curves described by the discrete Burgers hierarchy as isogonal deformations. We also construct explicit formulas for the curve deformations by using the solution of linear diffusion differential/difference equations.



قيم البحث

اقرأ أيضاً

In this paper, we consider the discrete deformation of the discrete space curves with constant torsion described by the discrete mKdV or the discrete sine-Gordon equations, and show that it is formulated as the torsion-preserving equidistant deformat ion on the osculating plane which satisfies the isoperimetric condition. The curve is reconstructed from the deformation data by using the Sym-Tafel formula. The isoperimetric equidistant deformation of the space curves does not preserve the torsion in general. However, it is possible to construct the torsion-preserving deformation by tuning the deformation parameters. Further, it is also possible to make an arbitrary choice of the deformation described by the discrete mKdV equation or by the discrete sine-Gordon equation at each step. We finally show that the discrete deformation of discrete space curves yields the discrete K-surfaces.
After characterizing the integrable discrete analogue of the Eulers elastica, we focus our attention on the problem of approximating a given discrete planar curve by an appropriate discrete Eulers elastica. We carry out the fairing process via a $L^2 !$-distance minimization to avoid the numerical instabilities. The optimization problem is solved via a gradient-driven optimization method (IPOPT). This problem is non-convex and the result strongly depends on the initial guess, so that we use a discrete analogue of the algorithm provided by Brander et al., which gives an initial guess to the optimization method.
95 - H. Aratyn 2004
An algebra isomorphism between algebras of matrices and difference operators is used to investigate the discrete integrable hierarchy. We find local and non-local families of R-matrix solutions to the modified Yang-Baxter equation. The three R-theore tic Poisson structures and the Suris quadratic bracket are derived. The resulting family of bi-Poisson structures include a seminal discrete bi-Poisson structure of Kupershmidt at a special value.
The local induction equation, or the binormal flow on space curves is a well-known model of deformation of space curves as it describes the dynamics of vortex filaments, and the complex curvature is governed by the nonlinear Schrodinger equation (NLS ). In this paper, we present its discrete analogue, namely, a model of deformation of discrete space curves by the discrete nonlinear Schrodinger equation (dNLS). We also present explicit formulas for both NLS and dNLS flows in terms of the $tau$ function of the 2-component KP hierarchy.
We consider the Cauchy problem for the Burgers hierarchy with general time dependent coefficients. The closed form for the Greens function of the corresponding linear equation of arbitrary order $N$ is shown to be a sum of generalised hypergeometric functions. For suitably damped initial conditions we plot the time dependence of the Cauchy problem over a range of $N$ values. For $N=1$, we introduce a spatial forcing term. Using connections between the associated second order linear Schr{o}dinger and Fokker-Planck equations, we give closed form expressions for the corresponding Greens functions of the sinked Bessel process with constant drift. We then apply the Greens function to give time dependent profiles for the corresponding forced Burgers Cauchy problem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا