ﻻ يوجد ملخص باللغة العربية
Applying the Pomeransky inverse scattering method to the four-dimensional vacuum Einstein equations and using the Levi-Civita solution as a seed, we construct a two-soliton solution with cylindrical symmetry. In our previous work, we constructed the one-soliton solution with a real pole and showed that the singularities that the Levi-Civita background has on an axis can be removed by the choice of certain special parameters, but it still has unavoidable null singularities, as usual one-solitons do. In this work, we show that for the two-soliton solutions, any singularities can be removed by suitable parameter-setting and such solutions describe the propagation of gravitational wave packets. Moreover, in terms of the two-soliton solutions, we mention a time shift phenomenon, the coalescence and the split of solitons as the nonlinear effect of gravitational waves.
Applying the Pomeransky inverse scattering method to the four-dimensional vacuum Einstein equation and using the Levi-Civita solution for a seed, we construct a cylindrically symmetric single-soliton solution. Although the Levi-Civita spacetime gener
We study the most general solution for affine connections that are compatible with the variational principle in the Palatini formalism for the Einstein-Hilbert action (with possible minimally coupled matter terms). We find that there is a family of s
We consider an exact Einstein-Maxwell solution constructed by Alekseev and Garcia which describes a Schwarzschild black hole immersed in the magnetic universe of Levi-Civita, Bertotti and Robinson (LCBR). After reviewing the basic properties of this
In the years 1917-1919 Tullio Levi-Civita published a number of papers presenting new solutions to Einsteins equations. This work, while partially translated, remains largely inaccessible to English speaking authors. In this paper we review these sol
We consider a family of globally stationary (horizonless), asymptotically flat solutions of five-dimensional supergravity. We prove that massless linear scalar waves in such soliton spacetimes cannot have a uniform decay rate faster than inverse loga