ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconducting Magnet with the Reduced Barrel Yoke for the Hadron Future Circular Collider

54   0   0.0 ( 0 )
 نشر من قبل Vyacheslav Klyukhin
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The conceptual design study of a hadron Future Circular Collider (FCC-hh) with a center-of-mass energy of the order of 100 TeV in a new tunnel of 80-100 km circumference assumes the determination of the basic requirements for its detectors. A superconducting solenoid magnet of 12 m diameter inner bore with the central magnetic flux density of 6 T is proposed for a FCC-hh experimental setup. The coil of 24.518 m long has seven 3.5 m long modules included into one cryostat. The steel yoke with a mass of 21 kt consists of two barrel layers of 0.5 m radial thickness, and 0.7 m thick nose disk, four 0.6 m thick end-cap disks, and three 0.8 m thick muon toroid disks each side. The outer diameter of the yoke is 17.7 m; the length without the forward muon toroids is 33 m. The air gaps between the end-cap disks provide the installation of the muon chambers up to the pseudorapidity of pm 3.5. The conventional forward muon spectrometer provides the measuring of the muon momenta in the pseudorapidity region from pm 2.7 to pm 4.6. The magnet modeled with Cobhams program TOSCA. The total Ampere-turns in the superconducting solenoid coil are 127.25 MA-turns. The stored energy is 43.3 GJ. The axial force onto each end-cap is 480 MN. The stray field at the radius of 50 m off the coil axis is 14.1 mT and 5.4 mT at the radius of 100 m. All other parameters presented and discussed.



قيم البحث

اقرأ أيضاً

The conceptual design study of a Future Circular hadron-hadron Collider (FCC-hh) with a center-of-mass energy of the order of 100 TeV, assumed to be constructed in a new tunnel of 80-100 km circumference, includes the determination of the basic requi rements for its detectors. A superconducting solenoid magnet of 12-m-diameter inner bore with the central magnetic flux density of 6 T, in combination with two superconducting dipole magnets and two conventional toroid magnets is proposed for an FCC-hh experimental setup. The coil of 23.468 m length has seven 3.35-m-long modules included into one cryostat. The steel yoke with a mass of 22.6 kt consists of two barrel layers of 0.5 m radial thickness and a 0.7-m-thick nose disk and four 0.6-m-thick end-cap disks each side. The outer diameter of the yoke is 17.7 m. The full length of the magnetic system is 62.6 m. The air gaps between the end-cap disks provide for the installation of the muon chambers up to an absolute pseudorapidity about 2.7. The superconducting dipole magnets provide measurement of charged particle momenta in the absolute pseudorapidity region greater than 3. The conventional forward muon spectrometer allows muon identification in the absolute pseudorapidity region from 2.7 to 5. The magnet is modeled with the program TOSCA from Cobham CTS Limited. The total current in the superconducting solenoid coil is 123 MA-turns; the stored energy is 41.8 GJ. The axial force acting on each end-cap is 450 MN. The stray field is 13.7 mT at a radius of 50 m from the coil axis, and 5.2 mT at a radius of 100 m. Many other parameters are presented and discussed.
The Compact Muon Solenoid (CMS) is a general purpose detector, designed to run at the highest luminosity at the CERN Large Hadron Collider (LHC). Its distinctive features include a 4 T superconducting solenoid with 6-m-diameter by 12.5-m-length free bore, enclosed inside a 10,000-ton return yoke made of construction steel. The return yoke consists of five dodecagonal three-layered barrel wheels and four end-cap disks at each end comprised of steel blocks up to 620 mm thick, which serve as the absorber plates of the muon detection system. To measure the field in and around the steel, a system of 22 flux loops and 82 3-D Hall sensors is installed on the return yoke blocks. A TOSCA 3-D model of the CMS magnet is developed to describe the magnetic field everywhere outside the tracking volume measured with the field-mapping machine. The first attempt is made to measure the magnetic flux density in the steel blocks of the CMS magnet yoke using the standard magnet discharge with the current ramp down speed of 1.5 A/s.
76 - B. Cure , N. Amapane , A. Ball 2016
The Compact Muon Solenoid (CMS) is a general purpose detector, designed to run at the highest luminosity at the CERN Large Hadron Collider (LHC). Its distinctive features include a 4 T superconducting solenoid with 6-m-diameter by 12.5-m-length free bore, enclosed inside a 10,000-ton return yoke made of construction steel. The flux return yoke consists of five dodecagonal three-layered barrel wheels and four end-cap disks at each end comprised of steel blocks up to 620 mm thick, which serve as the absorber plates of the muon detection system. To measure the field in and around the steel, a system of 22 flux loops and 82 3-D Hall sensors is installed on the return yoke blocks. A TOSCA 3-D model of the CMS magnet is developed to describe the magnetic field everywhere outside the tracking volume that was measured with the field-mapping machine. The voltages induced in the flux loops by the magnetic flux changing during the CMS magnet standard ramps down are measured with six 16-bit DAQ modules. The off-line integration of the induced voltages reconstructs the magnetic flux density in the yoke steel blocks at the operational magnet current of 18.164 kA. The results of the flux loop measurements during three magnet ramps down are presented and discussed.
71 - Zhiyang Yuan 2019
The discovery of a SM Higgs boson at the LHC brought about great opportunity to investigate the feasibility of a Circular Electron Positron Collider (CEPC) operating at center-of-mass energy of $sim 240$ GeV, as a Higgs factory, with designed luminos ity of about $2times 10^{34}cm^{-2}s^{-1}$. The CEPC provides a much cleaner collision environment than the LHC, it is ideally suited for studying the properties of Higgs boson with greater precision. Another advantage of the CEPC over the LHC is that the Higgs boson can be detected through the recoil mass method by only reconstructing Z boson decay without examining the Higgs decays. In Concept Design Report(CDR), the circumference of CEPC is 100km, with two interaction points available for exploring different detector design scenarios and technologies. The baseline design of CEPC detector is an ILD-like concept, with a superconducting solenoid of 3.0 Tesla surrounding the inner silicon detector, TPC tracker detector and the calorimetry system. Time Projection Chambers (TPCs) have been extensively studied and used in many fields, especially in particle physics experiments, including STAR and ALICE. The TPC detector will operate in continuous mode on the circular machine. To fulfill the physics goals of the future circular collider and meet Higgs/$Z$ run, a TPC with excellent performance is required. We have proposed and investigated the ions controlling performance of a novel configuration detector module. The aim of this study is to suppress ion backflow ($IBF$) continually. In this paper, some update results of the feasibility and limitation on TPC detector technology R$&$D will be given using the hybrid gaseous detector module.
Single muon triggers are crucial for the physics programmes at hadron collider experiments. To be sensitive to electroweak processes, single muon triggers with transverse momentum thresholds down to 20 GeV and dimuon triggers with even lower threshol ds are required. In order to keep the rates of these triggers at an acceptable level these triggers have to be highly selective, i.e. they must have small accidental trigger rates and sharp trigger turn-on curves. The muon systems of the LHC experiments and experiments at future colliders like FCC-hh will use two muon chamber systems for the muon trigger, fast trigger chambers like RPCs with coarse spatial resolution and much slower precision chambers like drift-tube chambers with high spatial resolution. The data of the trigger chambers are used to identify the bunch crossing in which the muon was created and for a rough momentum measurement while the precise measurements of the muon trajectory by the precision chambers are ideal for an accurate muon momentum measurement. A compact muon track finding algorithm is presented, where muon track candidates are reconstructed using a binning algorithm based on a 1D Hough Transform. The algorithm has been designed and implemented on a System-On-Chip device. A hardware demonstration using Xilinx Evaluation boards ZC706 has been set-up to prove the concept. The system has demonstrated the feasibility to reconstruct muon tracks with a good angular resolution, whilst satisfying latency constraints. The demonstrated track-reconstruction system, the chosen architecture, the achievements to date and future options for such a system will be discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا