ترغب بنشر مسار تعليمي؟ اضغط هنا

Propagation of energetic electrons from the corona into interplanetary space and type III radio emission

41   0   0.0 ( 0 )
 نشر من قبل Frank Breitling
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

During solar flares a large amount of electrons with energies greater than 20 keV is generated with a production rate of typically $10^{36}$ s$^{-1}$. A part of them is able to propagate along open magnetic field lines through the corona into interplanetary space. During their travel they emit radio radiation which is observed as type III radio bursts in the frequency range from 100 MHz down to 10 kHz by the WAVES radio spectrometer aboard the spacecraft WIND, for instance. From the drift rates of these bursts in dynamic radio spectra the radial propagation velocity $V_r$ of the type III burst exciting electrons is derived by employing a newly developed density model of the heliosphere. Calculations show that the radio radiation is emitted by electrons with different $V_r$ and therefore by different electrons of the initially produced electron distribution.



قيم البحث

اقرأ أيضاً

Type III bursts and hard X-rays are both produced by flare energetic electron beams. The link between both emissions has been investigated in many previous studies, but no statistical studies have compared both coronal and interplanetary type III bur sts with X-ray flares. Using coronal radio events above 100 MHz exclusively from type III bursts, we revisited long-standing questions: Do all coronal type III bursts have X-ray counterparts. What correlation, if any, occurs between radio and X-ray intensities. What X-ray and radio signatures above 100 MHz occur in connection with interplanetary type III bursts below 14 MHz. We analysed data from 2002 to 2011 starting with coronal type III bursts above 100 MHz. We used RHESSI X-ray data greater than 6 keV to make a list of 321 events that have associated type III bursts and X-ray flares, encompassing at least 28 percent of the initial sample of type III events. We examined the timings, intensities, associated GOES class, and any interplanetary radio signature. For our 321 events, the X-ray emission at 6 keV usually lasted longer than type III burst groups at frequencies greater than 100 MHz. A weak correlation was found between the type III radio flux at frequencies below 327 MHz and the X-ray intensity at 25-50 keV, with an absence of events at high X-ray intensity and low type III radio flux. Interplanetary type III bursts less than 14 MHz were observed for 54 percent of the events, increasing when events were observed with 25-50 keV X-rays. A stronger interplanetary association was present when 25-50 keV count rates were above 250 counts per second or 170 MHz fluxes were greater than 1000 SFU, relating to more energetic electrons above 25 keV and events where magnetic flux tubes extend into the high corona. On average type III bursts increase in flux with decreasing frequency, the rate varies from event to event.
237 - Y. K. Kou , Z. C. Jing , X. Cheng 2020
Energetic electrons accelerated by solar flares often give rise to type III radio bursts at a broad waveband and even interplanetary type III bursts (IT3) if the wavelength extends to decameter-kilometer. In this Letter, we investigate the probabilit y of the flares that produce IT3, based on the sample of 2272 flares above M-class observed from 1996 to 2016. It is found that only 49.6% of the flares are detected to be accompanied with IT3. The duration, peak flux, and fluence of the flares with and without IT3 both present power-law distributions in the frequency domain, but the corresponding spectral indices for the former (2.06$pm$0.17, 2.04$pm$0.18, and 1.55$pm$0.09) are obviously smaller than that for the latter (2.82$pm$0.22, 2.51$pm$0.19, and 2.40$pm$0.09), showing that the flares with IT3 have longer durations and higher peak fluxes. We further examine the relevance of coronal mass ejections (CMEs) to the two groups of flares. It is found that 58% (655 of 1127) of the flares with IT3 but only 19% (200 of 1078) of the flares without IT3 are associated with CMEs, and that the associated CMEs for the flares with IT3 are inclined to be wider and faster. This indicates that CMEs may also play a role in producing IT3, speculatively facilitating the escape of accelerated electrons from the low corona to the interplanetary space.
139 - Vratislav Krupar 2015
Type III radio bursts are intense radio emissions triggered by beams of energetic electrons often associated with solar flares. These exciter beams propagate outwards from the Sun along an open magnetic field line in the corona and in the interplanet ary (IP) medium. We performed a statistical survey of 29 simple and isolated IP type III bursts observed by STEREO/Waves instruments between January 2013 and September 2014. We investigated their time-frequency profiles in order to derive the speed and acceleration of exciter electron beams. We show these beams noticeably decelerate in the IP medium. Obtained speeds range from $sim$ 0.02c up to $sim$ 0.35c depending on initial assumptions. It corresponds to electron energies between tens of eV and hundreds of keV, and in order to explain the characteristic energies or speeds of type III electrons ($sim 0.1$c) observed simultaneously with Langmuir waves at 1 au, the emission of type III bursts near the peak should be predominately at double plasma frequency. Derived properties of electron beams can be used as input parameters for computer simulations of interactions between the beam and the plasma in the IP medium.
Solar energetic particles (SEPs), accelerated during solar eruptions, propagate in turbulent solar wind before being observed with in situ instruments. In order to interpret their origin through comparison with remote-sensing observations of the sola r eruption, we thus must deconvolve the transport effects due to the turbulent magnetic fields from the SEP observations. Recent research suggests that the SEP propagation is guided by the turbulent meandering of the magnetic fieldlines across the mean magnetic field. However, the lengthening of the distance the SEPs travel, due to the fieldline meandering, has so far not been included in SEP event analysis. This omission can cause significant errors in estimation of the release times of SEPs at the Sun. We investigate the distance travelled by the SEPs by considering them to propagate along fieldlines that meander around closed magnetic islands that are inherent in turbulent plasma. We introduce a fieldline randow walk model which takes into account the physical scales associated to the magnetic islands. Our method remedies the problem of the diffusion equation resulting in unrealistically short pathlengths, and the fractal dependence of the pathlength of random walk on the length of the random-walk step. We find that the pathlength from the Sun to 1 au can be below the nominal Parker spiral length for SEP events taking place at solar longitudes 45E to 60W, whereas the western and behind-the-limb particles can experience pathlengths longer than 2 au due to fieldline meandering.
89 - S. Dalla , G. De Nolfo , A. Bruno 2020
Context. Solar Energetic Particles (SEPs) with energy in the GeV range can propagate to Earth from their acceleration region near the Sun and produce Ground Level Enhancements (GLEs). The traditional approach to interpreting and modelling GLE observa tions assumes particle propagation only parallel to the magnetic field lines of interplanetary space, i.e. it is spatially 1D. Recent measurements by PAMELA have characterised SEP properties at 1 AU for the ~100 MeV-1 GeV range at high spectral resolution. Aims. We model the transport of GLE-energy solar protons through the Interplanetary Magnetic Field (IMF) using a 3D approach, to assess the effect of the Heliospheric Current Sheet (HCS) and drifts associated to the gradient and curvature of the Parker spiral. The latter are influenced by the IMF polarity. We derive 1 AU observables and compare the simulation results with data from PAMELA. Methods. We use a 3D test particle model including a HCS. Monoenergetic populations are studied first to obtain a qualitative picture of propagation patterns and numbers of crossings of the 1 AU sphere. Simulations for power law injection are used to derive intensity profiles and fluence spectra at 1 AU. A simulation for a specific event, GLE 71, is used to compare with PAMELA data. Results. Spatial patterns of 1 AU crossings and the average number of crossings are strongly influenced by 3D effects, with significant differences between periods of A+ and A- polarities. The decay time constant of 1 AU intensity profiles varies depending on the polarity and position of the observer, and it is not a simple function of the mean free path as in 1D models. Energy dependent leakage from the injection flux tube is particularly important for GLE energy particles, in many cases resulting in a roll-over in the fluence spectrum.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا