ﻻ يوجد ملخص باللغة العربية
We propose a new class of algebraic structure named as emph{$(m,n)$-semihyperring} which is a generalization of usual emph{semihyperring}. We define the basic properties of $(m,n)$-semihyperring like identity elements, weak distributive $(m,n)$-semihyperring, zero sum free, additively idempotent, hyperideals, homomorphism, inclusion homomorphism, congruence relation, quotient $(m,n)$-semihyperring etc. We propose some lemmas and theorems on homomorphism, congruence relation, quotient $(m,n)$-semihyperring, etc and prove these theorems. We further extend it to introduce the relationship between fuzzy sets and $(m,n)$-semihyperrings and propose fuzzy hyperideals and homomorphism theorems on fuzzy $(m,n)$-semihyperrings and the relationship between fuzzy $(m,n)$-semihyperrings and the usual $(m,n)$-semihyperrings.
We propose a new class of mathematical structures called (m,n)-semirings} (which generalize the usual semirings), and describe their basic properties. We also define partial ordering, and generalize the concepts of congruence, homomorphism, ideals, e
In this invited talk I discuss two recent applications of charmonium (Psi) decays to N Nbar m final states, where N is a nucleon and m is a light meson. There are several motivations for studying these decays: 1) They are useful for the study of N* s
We show how a recently proposed large $N$ duality in the context of type IIA strings with ${cal N}=1$ supersymmetry in 4 dimensions can be derived from purely geometric considerations by embedding type IIA strings in M-theory. The phase structure of
In this paper we investigate the description of the complex Leibniz superalgebras with nilindex n+m, where n and m ($m eq 0$) are dimensions of even and odd parts, respectively. In fact, such superalgebras with characteristic sequence equal to $(n_1,
We introduce and define the quantum affine $(m|n)$-superspace (or say quantum Manin superspace) $A_q^{m|n}$ and its dual object, the quantum Grassmann superalgebra $Omega_q(m|n)$. Correspondingly, a quantum Weyl algebra $mathcal W_q(2(m|n))$ of $(m|n