ﻻ يوجد ملخص باللغة العربية
Elucidating the nature of the magnetism of a high-temperature superconductor is crucial for establishing its pairing mechanism. The parent compounds of the cuprate and iron-pnictide superconductors exhibit Neel and stripe magnetic order, respectively. However, FeSe, the structurally simplest iron-based superconductor, shows nematic order (Ts = 90 K), but not magnetic order in the parent phase, and its magnetic ground state is intensely debated. Here, we report inelastic neutron-scattering experiments that reveal both stripe and Neel spin fluctuations over a wide energy range at 110 K. On entering the nematic phase, a substantial amount of spectral weight is transferred from the Neel to the stripe spin fluctuations. Moreover, the total fluctuating magnetic moment of FeSe is ~ 60% larger than that in the iron pnictide BaFe2As2. Our results suggest that FeSe is a novel S = 1 nematic quantum-disordered paramagnet interpolating between the Neel and stripe magnetic instabilities.
We present $beta$-FeSe magnetotransport data, and describe them theoretically. Using a simplified microscopic model with two correlated effective orbitals, we determined the normal state electrical conductivity and Hall coefficient, using Kubo formal
The origin of the electronic nematicity in FeSe, which occurs below a tetragonal-to-orthorhombic structural transition temperature $T_s$ ~ 90 K, well above the superconducting transition temperature $T_c = 9$ K, is one of the most important unresolve
FeSe is arguably the simplest, yet the most enigmatic, iron-based superconductor. Its nematic but non-magnetic ground state is unprecedented in this class of materials and stands out as a current puzzle. Here, our NMR measurements in the nematic stat
We offer an explanation for the recently observed pressure-induced magnetic state in the iron-chalcogenide FeSe based on textit{ab initio} estimates for the pressure evolution of the most important Coulomb interaction parameters. We find that an incr
Magnetism induced by external pressure ($p$) was studied in a FeSe crystal sample by means of muon-spin rotation. The magnetic transition changes from second-order to first-order for pressures exceeding the critical value $p_{{rm c}}simeq2.4-2.5$ GPa