ﻻ يوجد ملخص باللغة العربية
Quantum technologies will ultimately require manipulating many-body quantum systems with high precision. Cold atom experiments represent a stepping stone in that direction: a high degree of control has been achieved on systems of increasing complexity, however, this control is still sub-optimal. Optimal control theory is the ideal candidate to bridge the gap between early stage and optimal experimental protocols, particularly since it was extended to encompass many-body quantum dynamics. Here, we experimentally demonstrate optimal control applied to two dynamical processes subject to interactions: the coherent manipulation of motional states of an atomic Bose-Einstein condensate and the crossing of a quantum phase transition in small systems of cold atoms in optical lattices. We show theoretically that these transformations can be made fast and robust with respect to perturbations, including temperature and atom number fluctuations, resulting in a good agreement between theoretical predictions and experimental results.
We present a systematic scheme for optimization of quantum simulations. Specifically, we show how polychromatic driving can be used to significantly improve the driving of Raman transitions in the Lambda system, which opens new possibilities for controlled driven-induced effective dynamics.
We study the properties of a quantum particle interacting with a one dimensional structure of equidistant scattering centres. We derive an analytical expression for the dispersion relation and for the Bloch functions in the presence of both even and
The importance of feedback control is being increasingly appreciated in quantum physics and applications. This paper describes the use of optimal control methods in the design of quantum feedback control systems, and in particular the paper formulate
We present a fast scheme for arbitrary unitary control of interacting bosonic atoms in a double-well. Assuming fixed inter-well tunnelling rate and intra-well interaction strength, we control the many-atom state by a discrete sequence of shifts of th
Ultracold atoms are trapped circumferentially on a ring that is pierced at its center by a flux tube arising from a light-induced gauge potential due to applied Laguerre-Gaussian fields. We show that by using optical coherent state superpositions to