ﻻ يوجد ملخص باللغة العربية
This is the second paper of the series aimed at understanding the ensemble of instanton-dyons, now with two flavors of light dynamical quarks. The partition function is appended by the fermionic factor, $(det T)^{N_f}$ and Dirac eigenvalue spectra at small values are derived from the numerical simulation of 64 and 128 dyons. Those spectra show clear chiral symmetry breaking pattern at high dyon density.
It is known since 1980s that the instanton-induced t Hooft effective Lagrangian not only can solve the so called $U(1)a$ problem, by making the $eta$ meson heavy etc, but it can also lead to chiral symmetry breaking. In 1990s it was demonstrated that
We establish that QED3 can possess a critical number of flavours, N_f^c, associated with dynamical chiral symmetry breaking if, and only if, the fermion wave function renormalisation and photon vacuum polarisation are homogeneous functions at infrare
A distinctive feature of the presence of spontaneous chiral symmetry breaking in QCD is the condensation of low modes of the Dirac operator near the origin. The rate of condensation must be equal to the slope of (Mpi^2 Fpi^2)/2 with respect to the qu
The nucleon is naturally viewed as a bipartite system of valence spin -- defined by its non-vanishing chiral charge -- and non-valence or sea spin. The sea spin can be traced over to give a reduced density matrix, and it is shown that the resulting e
In this work we present the results from numerical simulations of an interacting ensemble of instanton-dyons in the $SU(3)$ gauge group with $N_f=2$ flavors of massless quarks. Dynamical quarks are included via the effective interactions induced by t