ﻻ يوجد ملخص باللغة العربية
We match the non-relativistic quark model, with both flavor dependent and flavor independent effective quark-quark interactions, to the spin-flavor operator basis of the 1/Nc expansion for the L=1 non-strange baryons. We obtain analytic expressions for the coefficients of the 1/Nc operators in terms of radial integrals that depend on the shape and relative strength of the spin-spin, spin-orbit and tensor interactions of the model, which are left unspecified. We obtain several new, parameter-free relations between the seven masses and the two mixing angles that can discriminate between different spin-flavor structures of the effective quark-quark interaction. We discuss in detail how a general parametrization of the mass matrix depends on the mixing angles and is constrained by the assumptions on the effective quark-quark interaction. We find that, within the present experimental uncertainties, consistency with the best values of the mixing angles as determined by a recent global fit to masses and decays does not exclude any of the two most extreme possibilities of flavor dependent (independent) quark-quark interactions, as generated by meson (gluon) exchange interactions.
Consistent interactions for off-shell fermion fields of arbitrary spin are constructed from the gauge-invariance requirement of the interaction Lagrangians. These interactions play a crucial role in the quantum hadrodynamical description of high-spin
We discuss the matching of the quark model to the effective mass operator of the 1/Nc expansion using the permutation group S_N. As an illustration of the general procedure we perform the matching of the Isgur-Karl model for the spectrum of the negat
The charmonium-nucleon interaction is studied by the time-dependent HAL QCD method. We use a larger lattice volume and the relativistic heavy quark action for charm quark to obtain less systematic errors than those in our previous study. As a result,
We use a symmetry-preserving truncation of meson and baryon bound-state equations in quantum field theory in order to develop a unified description of systems constituted from light- and heavy-quarks. In particular, we compute the spectrum and lepton
Drawing on experimental data for baryon resonances, Hamiltonian effective field theory (HEFT) is used to predict the positions of the finite-volume energy levels to be observed in lattice QCD simulations. We have studied the low-lying baryons $N^*(15