ترغب بنشر مسار تعليمي؟ اضغط هنا

The far-infrared emitting region in local galaxies and QSOs: Size and scaling relations

88   0   0.0 ( 0 )
 نشر من قبل Dieter Lutz
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use Herschel 70 to 160um images to study the size of the far-infrared emitting region in about 400 local galaxies and quasar (QSO) hosts. The sample includes normal `main-sequence star-forming galaxies, as well as infrared luminous galaxies and Palomar-Green QSOs, with different levels and structures of star formation. Assuming Gaussian spatial distribution of the far-infrared (FIR) emission, the excellent stability of the Herschel point spread function (PSF) enables us to measure sizes well below the PSF width, by subtracting widths in quadrature. We derive scalings of FIR size and surface brightness of local galaxies with FIR luminosity, with distance from the star-forming main-sequence, and with FIR color. Luminosities L_FIR ~ 10^11 L_Sun can be reached with a variety of structures spanning 2 dex in size. Ultraluminous L_FIR >~ 10^12 L_Sun galaxies far above the main-sequence inevitably have small Re_70um ~ 0.5 kpc FIR emitting regions with large surface brightness, and can be close to optically thick in the FIR on average over these regions. Compared to these local relations, first ALMA sizes for the dust emission regions in high redshift galaxies, measured at somewhat longer rest wavelengths, suggest larger sizes at the same IR luminosity. We report a remarkably tight relation with 0.15 dex scatter between FIR surface brightness and the ratio of [CII] 158um emission and FIR emission -- the so-called [CII]-deficit is more tightly linked to surface brightness than to FIR luminosity or FIR color. Among 33 z <~ 0.1 PG QSOs with typical L_FIR/L_Bol,AGN ~ 0.1, 19 have a measured 70um half light radius, with median Re_70um = 1.1kpc. This is consistent with the FIR size for galaxies with similar L_FIR but lacking a QSO, in accordance with a scenario where the rest FIR emission of these types of QSOs is, in most cases, due to host star formation.



قيم البحث

اقرأ أيضاً

We investigate star forming scaling relations using Bayesian inference on a comprehensive data sample of low- (z<0.1) and high-redshift (1<z<5) star forming regions. This full data set spans a wide range of host galaxy stellar mass ($M_{*} sim10^6-10 ^{11} M_{odot}$) and clump star formation rates (SFR $ sim10^{-5}-10^2 M_odot yr^{-1}$). We fit the power-law relationship between the size (r$_{Halpha}$) and luminosity (L$_{Halpha}$) of the star forming clumps using the Bayesian statistical modeling tool Stan that makes use of Markov Chain Monte Carlo (MCMC) sampling techniques. Trends in the scaling relationship are explored for the full sample and subsets based on redshift and selection effects between samples. In our investigation we find no evidence of redshift evolution of the size-luminosity scaling relationship, nor a difference in slope between lensed and unlensed data. There is evidence of a break in the scaling relationship between high and low star formation rate surface density ($Sigma_{SFR}$) clumps. The size-luminosity power law fit results are L$_{Halpha}sim$ r$_{Halpha}^{2.8}$ and L$_{Halpha}sim$ r$_{Halpha}^{1.7}$ for low and high $Sigma_{SFR}$ clumps, respectively. We present a model where star forming clumps form at locations of gravitational instability and produce an ionized region represented by the Str{o}mgren radius. A radius smaller than the scale height of the disk results in a scaling relationship of $L propto r^3$ (high $Sigma_{SFR}$ clumps), and a scaling of $L propto r^2$ (low $Sigma_{SFR}$ clumps) if the radius is larger than the disk scale height.
136 - Daizhong Liu , Yu Gao , Kate Isaak 2015
We present correlations between 9 CO transition ($J=4-3$ to $12-11$) and beam-matched far-infrared (Far-IR) luminosities ($L_{mathrm{FIR},,b}$) among 167 local galaxies, using {it{Herschel}} Spectral and Photometric Imaging Receiver Fourier Transform Spectrometer (SPIRE; FTS) spectroscopic data and Photoconductor Array Camera and Spectrometer (PACS) photometry data. We adopt entire-galaxy FIR luminosities ($L_{mathrm{FIR},,e}$) from the {it{IRAS}} Revised Bright Galaxy Sample and correct to $L_{mathrm{FIR},,b}$ using PACS images to match the varying FTS beam sizes. All 9 correlations between $L_{mathrm{CO}}$ and $L_{mathrm{FIR},,b}$ are essentially linear and tight ($sigma$=0.2-0.3 dex dispersion), even for the highest transition, $J=12-11$. This supports the notion that the star formation rate (SFR) is linearly correlated with the dense molecular gas ($n_{mathrm{H}_2}gtrsim10^{4-6},cm^{-3}$). We divide the entire sample into three subsamples and find that smaller sample sizes can induce large differences in the correlation slopes. We also derive an average CO spectral line energy distribution (SLED) for the entire sample and discuss the implied average molecular gas properties for these local galaxies. We further extend our sample to high-{it{z}} galaxies with CO $J=5-4$ data from the literature as an example, including submillimeter galaxies (SMGs) and normal star-forming BzKs. BzKs have similar FIR/CO(5-4) ratios as that of local galaxies, an follow well the locally-determined correlation, whereas SMG ratios fall around or slightly above the local correlation with large uncertainties. Finally, by including Galactic CO($J=10-9$) data as well as very limited high-{it{z}} CO $J=10-9$ data, we verify that the CO(10-9) -- FIR correlation successfully extends to Galactic young stellar objects, suggesting that linear correlations are valid over 15 orders of magnitude.
228 - A. Lapi 2018
We build templates of rotation curves as a function of the $I-$band luminosity via the mass modeling (by the sum of a thin exponential disk and a cored halo profile) of suitably normalized, stacked data from wide samples of local spiral galaxies. We then exploit such templates to determine fundamental stellar and halo properties for a sample of about $550$ local disk-dominated galaxies with high-quality measurements of the optical radius $R_{rm opt}$ and of the corresponding rotation velocity $V_{rm opt}$. Specifically, we determine the stellar $M_star$ and halo $M_{rm H}$ masses, the halo size $R_{rm H}$ and velocity scale ${V_{rm H}}$, and the specific angular momenta of the stellar $j_star$ and dark matter $j_{rm H}$ components. We derive global scaling relationships involving such stellar and halo properties both for the individual galaxies in our sample and for their mean within bins; the latter are found to be in pleasing agreement with previous determinations by independent methods (e.g., abundance matching techniques, weak lensing observations, and individual rotation curve modeling). Remarkably, the size of our sample and the robustness of our statistical approach allow us to attain an unprecedented level of precision over an extended range of mass and velocity scales, with $1sigma$ dispersion around the mean relationships of less than $0.1$ dex. We thus set new standard local relationships that must be reproduced by detailed physical models, that offer a basis for improving the sub-grid recipes in numerical simulations, that provide a benchmark to gauge independent observations and check for systematics, and that constitute a basic step toward the future exploitation of the spiral galaxy population as a cosmological probe.
The sample of dwarf galaxies with measured central black hole masses $M$ and velocity dispersions $sigma$ has recently doubled, and gives a close fit to the extrapolation of the $M propto sigma$ relation for more massive galaxies. We argue that this is difficult to reconcile with suggestions that the scaling relations between galaxies and their central black holes are simply a statistical consequence of assembly through repeated mergers. This predicts black hole masses significantly larger than those observed in dwarf galaxies unless the initial distribution of uncorrelated seed black hole and stellar masses is confined to much smaller masses than earlier assumed. It also predicts a noticeable flattening of the $M propto sigma$ relation for dwarfs, to $M propto sigma^2$ compared with the observed $M propto sigma^4$. In contrast black hole feedback predicts that black hole masses tend towards a universal $M propto sigma^4$ relation in all galaxies, and correctly gives the properties of powerful outflows recently observed in dwarf galaxies. These considerations emphasize once again that the fundamental physical black-hole -- galaxy scaling relation is between $M$ and $sigma$. The relation of $M$ to the bulge mass $M_b$ is acausal, and depends on the quite independent connection between $M_b$ and $sigma$ set by stellar feedback.
Assessments of the cold-gas reservoir in galaxies are a cornerstone for understanding star-formation processes and the role of feedback and baryonic cycling in galaxy evolution. Here we exploit a sample of 392 galaxies (dubbed MAGMA, Metallicity and Gas for Mass Assembly), presented in a recent paper, to quantify molecular and atomic gas properties across a broad range in stellar mass, Mstar, from $sim 10^7 - 10^{11}$ Msun. First, we find the metallicity ($Z$) dependence of alpha_CO to be shallower than previous estimates, with alpha_CO$propto (Z/Z_odot)^{-1.55}$. Second, molecular gas mass MH2 is found to be strongly correlated with Mstar and star-formation rate (SFR), enabling predictions of MH2 good to within $sim$0.2 dex. The behavior of atomic gas mass MHI in MAGMA scaling relations suggests that it may be a third, independent variable that encapsulates information about the circumgalactic environment and gas accretion. If Mgas is considered to depend on MHI, together with Mstar and SFR, we obtain a relation that predicts Mgas to within $sim$0.05 dex. Finally, the analysis of depletion times and the scaling of MHI/Mstar and MH2/Mstar over three different mass bins suggests that the partition of gas and the regulation of star formation through gas content depends on the mass regime. Dwarf galaxies tend to be overwhelmed by (HI) accretion, while for galaxies in the intermediate Mstar gas-equilibrium bin, star formation proceeds apace with gas availability. In the most massive gas-poor, bimodality galaxies, HI does not apparently participate in star formation, although it generally dominates in mass over H2. Our results confirm that atomic gas plays a key role in baryonic cycling, and is a fundamental ingredient for current and future star formation, especially in dwarf galaxies. (abridged for arXiv)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا