ﻻ يوجد ملخص باللغة العربية
The development of the $beta^-$ based radio-guided surgery aims to extend the technique to those tumours where surgery is the only possible treatment and the assessment of the resection would most profit from the low background around the lesion, as for brain tumours. Feasibility studies on meningioma, glioma, and neuroendocrine tumors already estimated the potentiality of this new treatment. To validate the technique, prototypes of the intraoperative probe required by the technique to detect $beta^-$ radiation have been developed. This paper discusses the design details of the device and the tests performed in laboratory. In such tests particular care has to be taken to reproduce the surgical field conditions. The innovative technique to produce specific phantoms and the dedicated testing protocols is described in detail.
A novel radio guided surgery (RGS) technique for cerebral tumors using $beta^{-}$ radiation is being developed. Checking the availability of a radio-tracer that can deliver a $beta^{-}$ emitter to the tumor is a fundamental step in the deployment of
A radio-guided surgery technique exploiting $beta^-$ emitters is under development. It aims at a higher target-to-background activity ratio implying both a smaller radiopharmaceutical activity and the possibility of extending the technique to cases w
The background induced by the high penetration power of the gamma radiation is the main limiting factor of the current Radio-guided surgery (RGS). To partially mitigate it, a RGS with beta+ emitting radio-tracers has been suggested in literature. H
The $beta^-$ based radio-guided surgery overcomes the corresponding $gamma$ technique in case the background from healthy tissues is relevant. It can be used only in case a radio-tracer marked with $^{90}$Y is available since the current probe protot
Proton and carbon ion therapy is an emerging technique used for the treatment of solid cancers. The monitoring of the dose delivered during such treatments and the on-line knowledge of the Bragg peak position is still a matter of research. A possible