ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-thermal representation of the kappa-distribution of solar flare electrons and application to simultaneous X-ray and EUV observations

97   0   0.0 ( 0 )
 نشر من قبل Marina Battaglia
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Acceleration of particles and plasma heating is one of the fundamental problems in solar flare physics. An accurate determination of the spectrum of flare energized electrons over a broad energy range is crucial for our understanding of aspects such as the acceleration mechanism and the total flare energy. Recent years have seen a growing interest in the kappa-distribution as representation of the total spectrum of flare accelerated electrons. In this work we present the kappa-distribution as a differential emission measure. This allows for inferring the electron distribution from X-ray observations and EUV observations by simultaneously fitting the proposed function to RHESSI and SDO/AIA data. This yields the spatially integrated electron spectra of a coronal source between less than 0.1 keV up to several tens of keV. The method is applied to a single-loop GOES C4.1 flare. The results show that the total energy can only be determined accurately by combining RHESSI and AIA observations. Simultaneously fitting the proposed representation of the kappa-distribution reduces the electron number density in the analyzed flare by a factor of ~30 and the total flare energy by a factor of ~5 compared with the commonly used fitting of RHESSI spectra. The spatially integrated electron spectrum of the investigated flare between 0.043 keV and 24 keV is consistent with the combination of a low-temperature (~2 MK) component and a hot (~11 MK) kappa-like component with spectral index 4, reminiscent of solar wind distributions.



قيم البحث

اقرأ أيضاً

We present an analysis of soft X-ray (SXR) and extreme-ultraviolet (EUV) observations of solar flares with an approximate C8 GOES class. Our constraint on peak GOES SXR flux allows for the investigation of correlations between various flare parameter s. We show that the the duration of the decay phase of a flare is proportional to the duration of its rise phase. Additionally, we show significant correlations between the radiation emitted in the flare rise and decay phases. These results suggest that the total radiated energy of a given flare is proportional to the energy radiated during the rise phase alone. This partitioning of radiated energy between the rise and decay phases is observed in both SXR and EUV wavelengths. Though observations from the EVE show significant variation in the behavior of individual EUV spectral lines during different C8 events, this work suggests that broadband EUV emission is well constrained. Furthermore, GOES and AIA data, allow us to determine several thermal parameters (e.g. temperature, volume, density, and emission measure) for the flares within our sample. Analysis of these parameters demonstrate that, within this constrained GOES class, the longer duration solar flares are cooler events with larger volumes capable of emitting vast amounts of radiation. The shortest C8 flares are typically the hottest events, smaller in physical size, and have lower associated total energies. These relationships are directly comparable with several scaling laws and flare loop models.
One of the defining characteristics of a solar flare is the impulsive formation of very high temperature plasma. The properties of the thermal emission are not well understood, however, and the analysis of solar flare observations is often predicated on the assumption that the flare plasma is isothermal. The EUV Variability Experiment (EVE) on the Solar Dynamics Observatory (SDO) provides spectrally resolved observations of emission lines that span a wide range of temperatures (e.g., Fe XV-Fe XXIV) and allow for thermal flare plasma to be studied in detail. In this paper we describe a method for computing the differential emission measure distribution in a flare using EVE observations and apply it to several representative events. We find that in all phases of the flare the differential emission measure distribution is broad. Comparisons of EVE spectra with calculations based on parameters derived from the GOES soft X-ray fluxes indicate that the isothermal approximation is generally a poor representation of the thermal structure of a flare.
We present observations of a powerful solar eruption, accompanied by an X8.2 solar flare, from NOAA Active Region 12673 on 2017 September 10 by the Solar Ultraviolet Imager (SUVI) on the GOES-16 spacecraft. SUVI is noteworthy for its relatively large field of view, which allows it to image solar phenomena to heights approaching 2 solar radii. These observations include the detection of an apparent current sheet associated with magnetic reconnection in the wake of the eruption and evidence of an extreme-ultraviolet wave at some of the largest heights ever reported. We discuss the acceleration of the nascent coronal mass ejection to approximately 2000 km/s at about 1.5 solar radii. We compare these observations with models of eruptions and eruption-related phenomena. We also describe the SUVI data and discuss how the scientific community can access SUVI observations of the event.
During transient events such as major solar eruptions, the plasma can be far from the equilibrium ionization state because of rapid heating or cooling. Non-equilibrium ionization~(NEI) is important in rapidly evolving systems where the thermodynamica l timescale is shorter than the ionization or recombination time scales. We investigate the effects of NEI on EUV and X-ray observations by the Atmospheric Imaging Assembly (AIA) on board Solar Dynamic Observatory and X-ray Telescope (XRT) on board Hinode. Our model assumes that the plasma is initially in ionization equilibrium at low temperature, and it is heated rapidly by a shock or magnetic reconnection. We tabulate the responses of the AIA and XRT passbands as functions of temperature and a characteristic timescale, $n_{e}t$. We find that most of the ions reach equilibrium at $n_{e}tleq$10$^{12}$ cm$^{-3}$s. Comparing ratios of the responses between different passbands allows us to determine whether a combination of plasmas at temperatures in ionization equilibrium can account for a given AIA and XRT observation. It also expresses how far the observed plasma is from equilibrium ionization. We apply the ratios to a supra-arcade plasma sheet on 2012 January 27. We find that the closer the plasma is to the arcade, the closer it is to a single-temperature plasma in ionization equilibrium. We also utilize the set of responses to estimate the temperature and density for shocked plasma associated with a coronal mass ejection on 2010 June 13. The temperature and density ranges we obtain are in reasonable agreement with previous works.
We investigate the type III radio bursts and X-ray signatures of accelerated electrons in a well observed solar flare in order to find the spatial properties of the acceleration region. Combining simultaneous RHESSI hard X-ray flare data and radio da ta from Phoenix-2 and the Nanc{c}ay radioheliograph, the outward transport of flare accelerated electrons is analyzed. The observations show that the starting frequencies of type III bursts are anti-correlated with the HXR spectral index of solar flare accelerated electrons. We demonstrate both analytically and numerically that the type III burst starting location is dependent upon the accelerated electron spectral index and the spatial acceleration region size, but weakly dependent on the density of energetic electrons for relatively intense electron beams. Using this relationship and the observed anti-correlation, we estimate the height and vertical extent of the acceleration region, giving values of around 50 Mm and 10 Mm respectively. The inferred acceleration height and size suggests that electrons are accelerated well above the soft X-ray loop-top, which could be consistent with the electron acceleration between 40 Mm and 60 Mm above the flaring loop.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا