ﻻ يوجد ملخص باللغة العربية
Progress in the emergent field of topological superconductivity relies on synthesis of new material combinations, combining superconductivity, low density, and spin-orbit coupling (SOC). For example, theory [1-4] indicates that the interface between a one-dimensional (1D) semiconductor (Sm) with strong SOC and a superconductor (S) hosts Majorana modes with nontrivial topological properties [5-8]. Recently, epitaxial growth of Al on InAs nanowires was shown to yield a high quality S-Sm system with uniformly transparent interfaces [9] and a hard induced gap, indicted by strongly suppressed sub gap tunneling conductance [10]. Here we report the realization of a two-dimensional (2D) InAs/InGaAs heterostructure with epitaxial Al, yielding a planar S-Sm system with structural and transport characteristics as good as the epitaxial wires. The realization of 2D epitaxial S-Sm systems represent a significant advance over wires, allowing extended networks via top-down processing. Among numerous potential applications, this new material system can serve as a platform for complex networks of topological superconductors with gate-controlled Majorana zero modes [1-4]. We demonstrate gateable Josephson junctions and a highly transparent 2D S-Sm interface based on the product of excess current and normal state resistance.
Semiconductor-superconductor hybrids are commonly used in research on topological quantum computation. Traditionally, top-down approaches involving dry or wet etching are used to define the device geometry. These often aggressive processes risk causi
We show that the surface of an $s$-wave superconductor decorated with a two-dimensional lattice of magnetic impurities can exhibit chiral topological superconductivity. If impurities order ferromagnetically and the superconducting surface supports a
We investigate zero-bias conductance peaks that arise from coalescing subgap Andreev states, consistent with emerging Majorana zero modes, in hybrid semiconductor-superconductor wires defined in a two-dimensional InAs/Al heterostructure using top-dow
We introduce selective area grown hybrid InAs/Al nanowires based on molecular beam epitaxy, allowing arbitrary semiconductor-superconductor networks containing loops and branches. Transport reveals a hard induced gap and unpoisoned 2e-periodic Coulom
Semiconductors in the proximity of superconductors have been proposed to support phases hosting Majorana bound states. When the systems undergo a topological phase transition towards the Majorana phase, the spectral gap closes, then reopens, and the