ترغب بنشر مسار تعليمي؟ اضغط هنا

The initial mass function of young open clusters in the Galaxy: A preliminary result

270   0   0.0 ( 0 )
 نشر من قبل Beomdu Lim
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The initial mass function (IMF) is an essential tool with which to study star formation processes. We have initiated the photometric survey of young open clusters in the Galaxy, from which the stellar IMFs are obtained in a homogeneous way. A total of 16 famous young open clusters have preferentially been studied up to now. These clusters have a wide range of surface densities (log sigma = -1 to 3 [stars pc^2] for stars with mass larger than 5M_sun) and cluster masses (M_cl = 165 to 50,000M_sun), and also are distributed in five different spiral arms in the Galaxy. It is possible to test the dependence of star formation processes on the global properties of individual clusters or environmental conditions. We present a preliminary result on the variation of the IMF in this paper.



قيم البحث

اقرأ أيضاً

We have undertaken the largest systematic study of the high-mass stellar initial mass function (IMF) to date using the optical color-magnitude diagrams (CMDs) of 85 resolved, young (4 Myr < t < 25 Myr), intermediate mass star clusters (10^3-10^4 Msun ), observed as part of the Panchromatic Hubble Andromeda Treasury (PHAT) program. We fit each clusters CMD to measure its mass function (MF) slope for stars >2 Msun. For the ensemble of clusters, the distribution of stellar MF slopes is best described by $Gamma=+1.45^{+0.03}_{-0.06}$ with a very small intrinsic scatter. The data also imply no significant dependencies of the MF slope on cluster age, mass, and size, providing direct observational evidence that the measured MF represents the IMF. This analysis implies that the high-mass IMF slope in M31 clusters is universal with a slope ($Gamma=+1.45^{+0.03}_{-0.06}$) that is steeper than the canonical Kroupa (+1.30) and Salpeter (+1.35) values. Using our inference model on select Milky Way (MW) and LMC high-mass IMF studies from the literature, we find $Gamma_{rm MW} sim+1.15pm0.1$ and $Gamma_{rm LMC} sim+1.3pm0.1$, both with intrinsic scatter of ~0.3-0.4 dex. Thus, while the high-mass IMF in the Local Group may be universal, systematics in literature IMF studies preclude any definitive conclusions; homogenous investigations of the high-mass IMF in the local universe are needed to overcome this limitation. Consequently, the present study represents the most robust measurement of the high-mass IMF slope to date. We have grafted the M31 high-mass IMF slope onto widely used sub-solar mass Kroupa and Chabrier IMFs and show that commonly used UV- and Halpha-based star formation rates should be increased by a factor of ~1.3-1.5 and the number of stars with masses >8 Msun are ~25% fewer than expected for a Salpeter/Kroupa IMF. [abridged]
We highlight the impact of cluster-mass-dependent evolutionary rates upon the evolution of the cluster mass function during violent relaxation, that is, while clusters dynamically respond to the expulsion of their residual star-forming gas. Mass-depe ndent evolutionary rates arise when the mean volume density of cluster-forming regions is mass-dependent. In that case, even if the initial conditions are such that the cluster mass function at the end of violent relaxation has the same shape as the embedded-cluster mass function (i.e. infant weight-loss is mass-independent), the shape of the cluster mass function does change transiently {it during} violent relaxation. In contrast, for cluster-forming regions of constant mean volume density, the cluster mass function shape is preserved all through violent relaxation since all clusters then evolve at the same mass-independent rate. On the scale of individual clusters, we model the evolution of the ratio between the dynamical mass and luminous mass of a cluster after gas expulsion. Specifically, we map the radial dependence of the time-scale for a star cluster to return to equilibrium. We stress that fields-of-view a few pc in size only, typical of compact clusters with rapid evolutionary rates, are likely to reveal cluster regions which have returned to equilibrium even if the cluster experienced a major gas expulsion episode a few Myr earlier. We provide models with the aperture and time expressed in units of the initial half-mass radius and initial crossing-time, respectively, so that our results can be applied to clusters with initial densities, sizes, and apertures different from ours.
Massive relic galaxies formed the bulk of their stellar component before z~2 and have remained unaltered since then. Therefore, they represent a unique opportunity to study in great detail the frozen stellar population properties of those galaxies th at populated the primitive Universe. We have combined optical to near-infrared line-strength indices in order to infer, out to 1.5 Reff, the IMF of the nearby relic massive galaxy NGC 1277. The IMF of this galaxy is bottom-heavy at all radii, with the fraction of low-mass stars being at least a factor of two larger than that found in the Milky Way. The excess of low-mass stars is present throughout the galaxy, while the velocity dispersion profile shows a strong decrease with radius. This behaviour suggests that local velocity dispersion is not the only driver of the observed IMF variations seen among nearby early-type galaxies. In addition, the excess of low-mass stars shown in NGC 1277 could reflect the effect on the IMF of dramatically different and intense star formation processes at z~2, compared to the less extreme conditions observed in the local Universe.
As a young massive cluster in the Central Molecular Zone, the Arches cluster is a valuable probe of the stellar Initial Mass Function (IMF) in the extreme Galactic Center environment. We use multi-epoch Hubble Space Telescope observations to obtain h igh-precision proper motion and photometric measurements of the cluster, calculating cluster membership probabilities for stars down to 1.8 M$_{odot}$ between cluster radii of 0.25 pc -- 3.0 pc. We achieve a cluster sample with just ~8% field contamination, a significant improvement over photometrically-selected samples which are severely compromised by the differential extinction across the field. Combining this sample with K-band spectroscopy of 5 cluster members, we forward model the Arches cluster to simultaneously constrain its IMF and other properties (such as age and total mass) while accounting for observational uncertainties, completeness, mass segregation, and stellar multiplicity. We find that the Arches IMF is best described by a 1-segment power law that is significantly top-heavy: $alpha$ = 1.80 $pm$ 0.05 (stat) $pm$ 0.06 (sys), where dN/dm $propto$ m$^{-alpha}$, though we cannot discount a 2-segment power law model with a high-mass slope only slightly shallower than local star forming regions ($alpha$ = 2.04$^{+0.14}_{-0.19}$ $pm$ 0.04) but with a break at 5.8$^{+3.2}_{-1.2}$ $pm$ 0.02 M$_{odot}$. In either case, the Arches IMF is significantly different than the standard IMF. Comparing the Arches to other young massive clusters in the Milky Way, we find tentative evidence for a systematically top-heavy IMF at the Galactic Center.
We test the hypothesis that the initial mass function (IMF) is determined by the density probability distribution function (PDF) produced by supersonic turbulence. We compare 14 simulations of star cluster formation in 50 solar mass molecular cloud c ores where the initial turbulence contains either purely solenoidal or purely compressive modes, in each case resolving fragmentation to the opacity limit to determine the resultant IMF. We find statistically indistinguishable IMFs between the two sets of calculations, despite a factor of two difference in the star formation rate and in the standard deviation of $log(rho)$. This suggests that the density PDF, while determining the star formation rate, is not the primary driver of the IMF.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا