ﻻ يوجد ملخص باللغة العربية
Over half century ago Carl Brans participated in the construction of a viable deformation of the Einstein gravity theory. Their suggestion involves expanding the tensor-based theory by a scalar field. But experimental support has not materialized. Nevertheless the model continues to generate interest and new research. The reasons for the current activity is described in this essay, which is dedicated to Carl Brans on his eightieth birthday.
We discuss the local (gauged) Weyl symmetry and its spontaneous breaking and apply it to model building beyond the Standard Model (SM) and inflation. In models with non-minimal couplings of the scalar fields to the Ricci scalar, that are conformal in
Weyl invariant theories of scalars and gravity can generate all mass scales spontaneously, initiated by a dynamical process of inertial spontaneous symmetry breaking that does not involve a potential. This is dictated by the structure of the Weyl cur
We study baryogenesis in effective field theories where a $mathrm{U}(1)_{ B-L}$-charged scalar couples to gravity via curvature invariants. We analyze the general possibilities in such models, noting the relationships between some of them and existin
In this paper we discuss a disordered $d$-dimensional Euclidean $lambdavarphi^{4}$ model. The dominant contribution to the average free energy of this system is written as a series of the replica partition functions of the model. In each replica part
We consider some aspects of spontaneous breaking of Lorentz Invariance in field theories, discussing the possibility that the certain tensor operators may condensate in the ground state in which case the tensor Goldstone particles would appear. We an