ﻻ يوجد ملخص باللغة العربية
We have developed a lab work module where we teach undergraduate students how to quantify the dynamics of a suspension of microscopic particles, measuring and analyzing the motion of those particles at the individual level or as a group. Differential Dynamic Microscopy (DDM) is a relatively recent technique that precisely does that and constitutes an alternative method to more classical techniques such as dynamics light scattering (DLS) or video particle tracking (VPT). DDM consists in imaging a particle dispersion with a standard light microscope and a camera. The image analysis requires the students to code and relies on digital Fourier transform to obtain the intermediate scattering function, an autocorrelation function that characterizes the dynamics of the dispersion. We first illustrate DDM on the textbook case of colloids where we measure the diffusion coefficient. Then we show that DDM is a pertinent tool to characterize biologic systems such as motile bacteria i.e.bacteria that can self propel, where we not only determine the diffusion coefficient but also the velocity and the fraction of motile bacteria. Finally, so that our paper can be used as a tutorial to the DDM technique, we have joined to this article movies of the colloidal and bacterial suspensions and the DDM algorithm in both Matlab and Python to analyze the movies.
Combining experiments on active colloids, whose propulsion velocity can be controlled via a feedback loop, and theory of active Brownian motion, we explore the dynamics of an overdamped active particle with a motility that depends explicitly on the p
Differential dynamic microscopy (DDM) is a form of video image analysis that combines the sensitivity of scattering and the direct visualization benefits of microscopy. DDM is broadly useful in determining dynamical properties including the intermedi
The natural habitats of microorganisms in the human microbiome and ocean and soil ecosystems are full of colloids and macromolecules, which impart non-Newtonian flow properties drastically affecting the locomotion of swimming microorganisms. Although
We present a fast, high-throughput method for characterizing the motility of microorganisms in 3D based on standard imaging microscopy. Instead of tracking individual cells, we analyse the spatio-temporal fluctuations of the intensity in the sample f
Particle size is a key variable in understanding the behaviour of the particulate products that underpin much of our modern lives. Typically obtained from suspensions at rest, measuring the particle size under flowing conditions would enable advances