ﻻ يوجد ملخص باللغة العربية
AGN feedback from supermassive black holes (SMBHs) at the center of early type galaxies is commonly invoked as the explanation for the quenching of star formation in these systems. The situation is complicated by the significant amount of mass injected in the galaxy by the evolving stellar population over cosmological times. In absence of feedback, this mass would lead to unobserved galactic cooling flows, and to SMBHs two orders of magnitude more massive than observed. By using high-resolution 2D hydrodynamical simulations with radiative transport and star formation in state-of-the-art galaxy models, we show how the intermittent AGN feedback is highly structured on spatial and temporal scales, and how its effects are not only negative (shutting down the recurrent cooling episodes of the ISM), but also positive, inducing star formation in the inner regions of the host galaxy.
We present a spatially-resolved analysis of ionized and molecular gas in a nearby Seyfert 2 galaxy NGC 5728, using the VLT/MUSE and ALMA data. We find ionized gas outflows out to ~kpc scales, which encounter the star formation ring at 1 kpc radius. T
We present new, spatially resolved [CI]1-0, [CI]2-1, CO(7-6), and dust continuum observations of 4C 41.17 at $z=3.8$ obtained with the IRAM NOEMA interferometer. This is one of the best-studied radio galaxies in this epoch and is arguably the best ca
Large-scale, broad outflows are common in active galaxies. In systems where star formation coexists with an AGN, it is unclear yet the role that both play on driving the outflows. In this work we present three-dimensional radiative-cooling MHD simula
High-resolution observations of ionized and molecular gas in the nuclear regions of galaxies are indispensable for delineating the interplay of star formation, gaseous inflows, stellar radiation, and feedback processes. Combining our new ALMA band 3
We present a detailed study of the hydrodynamics of the matter reinserted by massive stars via stellar winds and supernovae explosions in young assembling galaxies. We show that the interplay between the thermalization of the kinetic energy provided